
LSDN Documentation

LSDN Collective

Jul 07, 2018





Contents

1 User’s Documentation 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Intended usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 System requirements . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Building from source . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.3 Building packages . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.4 Running tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Quick-Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.1 Setting up virtual machines . . . . . . . . . . . . . . . . . . . . . 5
1.3.2 Using configuration files . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.3 Using the C API . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Network representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4.1 Networks and their settings . . . . . . . . . . . . . . . . . . . . . 11
1.4.2 Virts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4.3 Physes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4.4 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4.5 Commit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4.6 Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.4.7 Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.4.8 Supported tunneling technologies . . . . . . . . . . . . . . . . . 17

1.5 Lsctl Configuration Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.5.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.5.2 Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.5.3 Nesting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.5.4 Argument types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.5.5 Directive reference . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.5.6 Command-line tools . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.6 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.6.1 Example 1 - Basic Principles . . . . . . . . . . . . . . . . . . . . . 33
1.6.2 Example 2 - VM Migration . . . . . . . . . . . . . . . . . . . . . . 37
1.6.3 Example 3 - Traffic Shaping . . . . . . . . . . . . . . . . . . . . . 38

i



1.7 C API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
1.7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
1.7.2 Object life-cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
1.7.3 Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
1.7.4 Network model life-cycle . . . . . . . . . . . . . . . . . . . . . . . 41
1.7.5 Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2 Programmer’s Documentation (Internals) 79
2.1 Project organization (components) . . . . . . . . . . . . . . . . . . . . . . 79
2.2 Netmodel implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 80
2.3 How to support a new network type . . . . . . . . . . . . . . . . . . . . . 83
2.4 Static bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
2.5 Command-line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
2.6 Test Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

2.6.1 CTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
2.6.2 Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
2.6.3 QEMU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3 Developmental Documentation 91
3.1 Problem Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.2 Current Situation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.3 Similar Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.3.1 open vSwitch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.3.2 vSphere Distributed Switch . . . . . . . . . . . . . . . . . . . . . 93
3.3.3 Hyper-V Virtual Switch . . . . . . . . . . . . . . . . . . . . . . . 93

3.4 Development Environment . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.4.1 Development Tools . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.4.2 Testing Environment . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.4.3 Communication Tools . . . . . . . . . . . . . . . . . . . . . . . . 94
3.4.4 Documentation Tools . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.4.5 Open-source contributions . . . . . . . . . . . . . . . . . . . . . . 95

3.5 Project Timeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.6 Team Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.7 Conclusion, Contribution and Future Work . . . . . . . . . . . . . . . . . 98

4 Generated Doxygen Documentation 101
4.1 Doxygen (Generated documentation) . . . . . . . . . . . . . . . . . . . . 101

ii



CHAPTER 1

User’s Documentation

1.1 Introduction

LSDN is a tool which allows you to easily configure networks with virtual machines
(or containers) in Linux. It let’s you configure network tunnels (VXLAN, Geneve . . . )
for separating groups of VMs into their own virtual networks.

Each virtual network behaves (from the perspective of a VM) as if all the computers
were connected to a simple switch and were on the same LAN.

LSDN ensures isolation between networks using the existing network tunneling tech-
nologies. Virtual machines never see traffic from devices that are not part of their vir-
tual network, even if they exist on the same host. Multiple virtual machines can even
have identical MAC addresses, as long as they are connected to different virtual net-
works. Thus, it is possible to virtualize multiple existing physical networks and run
them without interference in a single hosting location.

1.1.1 Intended usage

LSDN provides a configuration language, that allows you to describe the desired net-
work configuration (we call it a network model or netmodel for short): the virtual networks,
physical machines and virtual machines and their relationships. It can also be driven pro-
grammatically, using a C API.

You run LSDN on each physical machine and provide it with the same netmodel, either
by passing the same configuration file (you can use our dumping mechanism) or calling
the same C API calls. LSDN then takes care of the configuration so that the VMs in the
same virtual network can correctly talk to each other even if on different computers.

1



LSDN Documentation

If you run a static ZOO of VMs, you can simply copy over the configuration file to all
the physical machines. If you have more complex virtualization setup, you are likely
to have an orchestrator on each physical machine. In that case, you can modify your
orchestrator to use LSDN as a backend.

Open vSwitch

LSDN intentionally does not use Open vSwitch to configure the tunnels, but only basic
Linux networking (TC + flower classifier) to show that this is possible and can be made
reasonably convenient.

Configuring let’s say VLANs in this way is not very difficult, but it can be daunting if
done for Geneve or static VXLANs.

1.2 Installation

1.2.1 System requirements

The following libraries are needed for compiling LSDN:

• tcl >= 8.6.0

• uthash

• libmnl

• json-c

• libdaemon

• linux-headers >= 4.14

• libvirt (optional, only for libvirt demos)

You will also need CMake and (naturally) GCC for building the packages.

If you are running Ubuntu or Debain, run:

apt install tcl-dev uthash-dev libmnl-dev libjson-c-dev libdaemon-dev libvirt-dev␣
→˓cmake build-essential

If you are running Arch Linux, run:

pacman -S tcl uthash libmnl json-c libdaemon libvirt cmake

If you are running CentOS 7, run:

yum install gcc cmake uthash-devel libmnl-devel libdaemon-devel json-c-devel

However, you will need the EPEL repository for the uthash package and you will need
to install tcl-devel package from a different source (for example Psychotic Ninja).

2 Chapter 1. User’s Documentation

http://www.openvswitch.org/
https://centos.pkgs.org/7/psychotic-ninja-plus-x86_64/tcl-devel-8.6.5-2.el7.psychotic.x86_64.rpm.html


LSDN Documentation

If you are running openSUSE, run:

zypper install gcc cmake uthash libmnl-devel libdaemon-devel linux-glibc-devel tcl-
→˓devel libjson-c-devel

You will also need fairly recent Linux Kernel headers (at least 4.14) to build LSDN.
To actually run LSDN, we recommend 4.15, as 4.14 still has some bugs in the used
networking technologies and you might encounter crashes. This means you will either
need to run a recent version of your distribution or install the kernel manually.

The exception is RHEL and CentOS – they backport features into their kernels very
agressively and you migh be get lucky even with an 3.x CentOS/RHEL kernel.

If you do not plan on running LSDN on your machine, it is also possible to install just
the kernel headers by running:

make headers_install INSTALL_HDR_PATH=$header_dir

1.2.2 Building from source

Simply install all the required software listed above and run these commands in the
directory where you put the downloaded sources:

mkdir build
cd build
cmake ..
make
sudo make install

Now try running lsctl to see if the package was installed correctly.

If lsctl does not run correctly, check if your distribution looks for libraries in /usr/
local/lib or /usr/local/lib64. Some distributions do not look for libraries in user-
installed paths by default. To check the effective linker path, use ldconfig -v 2>/dev/
null | grep -v ^$'\t'.

If you have installed kernel headers manually (see previous section), instead of running
cmake .., run:

cmake -DKERNEL_HEADERS=$header_dir/include ..

1.2.3 Building packages

This project contains instruction files for building packages for various distributions of
Linux.

1.2. Installation 3



LSDN Documentation

Arch

The PKGBUILD file for Arch Linux is located in dist/arch/ and the package can be
built and installed as follows:

cd dist/arch/
makepkg
pacman -U lsdn*.tar.xz

If you do not want to build the package on your own, you can install lsdn with all it’s
dependencies directly from Arch User Repository (lsdn-git package):

pacaur -S lsdn-git # pacaur is AUR helper of our choice

Debian

See https://wiki.archlinux.org/index.php/installation_guide :)

Jokes aside, run:

ln -s dist/debian .
dpkg-buildpackage

The packages lsdn and lsdn-dev will be available in the parent folder.

RPM-based distributions

Spec file is located in dist/rpm directory. In addition, a convenience build script is
provided. Make sure your system has all the dependencies (see above) and also rpm-
build. Then, run:

sh dist/rpm/rpmbuild.sh

Resulting rpms will be placed in the dist/rpm directory.

1.2.4 Running tests

LSCTL includes a test-suite that constructs various virtual networks and tries pinging
VMs inside those networks. sudo make test starts these tests.

If you plan on developing LSDN, you might want to run the tests inside another level of
VM. There is already a testing environment ready for those purposes, built on QEMU
and minimal Arch root file system. More information can be found in the Developer
documentation section Test Environment.

4 Chapter 1. User’s Documentation

https://wiki.archlinux.org/index.php/installation_guide


LSDN Documentation

1.3 Quick-Start

Let’s use LSDN to configure a simple network: four VMs, running on two physical
machines. We will call the physical machines A and B and the virtual machines 1,
2, 3 and 4. The virtual machines 1 and 2 are running on physical machine A, virtual
machines 3 and 4 are located on physical machine B. The configuration is illustrated in
Fig. 1.1.

VM1

VM2

VM3

VM4
Machine A Machine B

Fig. 1.1: Network setup. Solid lines are physical machine connections, dashed lines
denote communication between virtual machines.

VMs 1 and 3 can communicate with each other and so can VMs 2 and 4. This means
we will create two virtual networks, one for VM 1 and 3, second for VM 2 and 4.

As mentioned in the Introduction, there are two major ways to use LSDN – configuration
files and C API. We will look at both possibilities.

1.3.1 Setting up virtual machines

You are free to use any Virtual Machine Manager you like: bare Qemu/KVM, libvirt
or VirtualBox or run containers (via LXC for example). The only thing LSDN needs
to know is which network interfaces on the host are assigned to the virtual machines.
Typically, this will be a tap interface for a VM and a veth interface for a container.

Qemu

If you are just trying out LSDN, we suggest you download some live distro (like Alpine
Linux) and run Qemu/KVM. First make sure QEMU is installed and then on physical
machine A run:

1.3. Quick-Start 5

https://alpinelinux.org/downloads/
https://alpinelinux.org/downloads/


LSDN Documentation

sudo qemu-system-x86_64 -enable-kvm -m 256 \
-cdrom $iso_path.iso \
-netdev type=tap,ifname=tap0,script=no,downscript=no,id=net0 \
-device virtio-net-pci,netdev=net0,mac=14:9b:dd:6b:81:71

This will start up the Live ISO. Now login into the VM and setup a simple IP configu-
ration:

ip addr change dev eth0 192.168.0.1/24
ip link set eth0 up

Do the same for the remaining virtual machines, but each time with a different MAC
and TAP interface name. There is no need to change the net0 strings:

• on A create VM using ifname=tap0, mac=14:9b:dd:6b:81:71 and set up IP address
as 192.168.0.1 (we just did that in example above).

• on A create VM using ifname=tap1, mac=92:89:90:93:61:75 and set up IP address
as 192.168.0.2

• on B create VM using ifname=tap0, mac=42:94:a5:f9:69:c6 and set up IP address
as 192.168.0.3

• on B create VM using ifname=tap1, mac=f2:9b:4f:48:2d:d1 and set up IP address
as 192.168.0.4

Libvirt

If you are using Libvirt, set up the virtual machines as usual. Unfortunately, virt-
manager can not be told to leave the VM’s networking alone. It will try to connect it to
a network, but that’s what LSDN will be used for! It can also not change an interface
MAC address. Instead, use virsh edit to manually change the VM’s XML. Change the
interface tag of VM 1 on A to look like this:

<interface type='ethernet'>
<mac address='14:9b:dd:6b:81:71'/>
<script path='/usr/bin/true'/>
<target dev='tap0'/>
<!-- original <model> and <address> -->

</interface>

Also change the other virtual machines but with different MAC and TAP interface
names (look at the Qemu section for correct values).

1.3.2 Using configuration files

Now that we have set-up the virtual machines, we can use LSDN to connect them. We
will start with an example using the configuration files (as opposed to the C API), as it
is simpler.

6 Chapter 1. User’s Documentation



LSDN Documentation

First, create the file config.lsctl with the following contents:

# Boilerplate
namespace import lsdn::*
# Choose the network tunneling technology
settings geneve

# Define the two virtual networks we have mentioned
net 1
net 2

# Describe the network
phys -name A -if eth0 -ip "192.168.10.1" {

attach 1 2
virt -name 1 -if tap0 -mac "14:9b:dd:6b:81:71" -net 1
virt -name 2 -if tap1 -mac "92:89:90:93:61:75" -net 2

}

phys -name B -if eth0 -ip "192.168.10.2" {
attach 1 2
virt -name 3 -if tap0 -mac "42:94:a5:f9:69:c6" -net 1
virt -name 4 -if tap1 -mac "f2:9b:4f:48:2d:d1" -net 2

}

# Tell LSDN what machine we are configuring right now
# (first commandline argument must contain the phys. machine name)
claimLocal [lindex $argv 0]
# Activate everything
commit

Naturally, if you are using different IP addresses for your physical machines, change
the configuration file. Also pay attention to the -if eth0 arguments – they tell LSDN
what interface you use for connecting machines A and B together and you may also
need to change the interface to reflect your physical setup.

Then make sure the file is available on both physical machines A and B and run the
following commands:

• on A: $ lsctl config.lsctl A

• on B: $ lsctl config.lsctl B

Congratulations, your network is set-up. Try it:

• in VM 1: $ ping 192.168.0.3

• in VM 2: $ ping 192.168.0.4

And they are correctly isolated too, since $ ping 192.168.0.2 won’t work in VM 1.

1.3.3 Using the C API

The equivalent network setup created using the LSDN C API:

1.3. Quick-Start 7



LSDN Documentation

#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>

#include <lsdn/lsdn.h>

/* Use the default GENEVE port */
static uint16_t geneve_port = 6081;

static struct lsdn_context *ctx;
static struct lsdn_settings *settings;
static struct lsdn_net *net1, *net2;
static struct lsdn_phys *machine1, *machine2;
static struct lsdn_virt *VM1, *VM2, *VM3, *VM4;

int main(int argc, const char* argv[])
{

/* On the command line pass in the machine name on which the program
* is being run. In our case the names will be either A or B. */

assert(argc == 2);

/* Create a new LSDN context */
ctx = lsdn_context_new("quickstart");
lsdn_context_abort_on_nomem(ctx);

/* Create new GENEVE network settings */
settings = lsdn_settings_new_geneve(ctx, geneve_port);

/* Create Machine 1 */
machine1 = lsdn_phys_new(ctx);
lsdn_phys_set_ip(machine1, LSDN_MK_IPV4(192, 168, 10, 1));
lsdn_phys_set_iface(machine1, "eth0");
lsdn_phys_set_name(machine1, "A");

/* Create Machine 2 */
machine2 = lsdn_phys_new(ctx);
lsdn_phys_set_ip(machine2, LSDN_MK_IPV4(192, 168, 10, 2));
lsdn_phys_set_iface(machine2, "eth0");
lsdn_phys_set_name(machine2, "B");

/* Create net1 */
net1 = lsdn_net_new(settings, 1);

/* Attach net1 */
lsdn_phys_attach(machine1, net1);
lsdn_phys_attach(machine2, net1);

/* Create net2 */
net2 = lsdn_net_new(settings, 2);

(continues on next page)

8 Chapter 1. User’s Documentation



LSDN Documentation

(continued from previous page)

/* Attach net2 */
lsdn_phys_attach(machine1, net2);
lsdn_phys_attach(machine2, net2);

/* Create VM1 */
VM1 = lsdn_virt_new(net1);
lsdn_virt_connect(VM1, machine1, "tap0");
lsdn_virt_set_mac(VM1, LSDN_MK_MAC(0x14,0x9b,0xdd,0x6b,0x81,0x71));
lsdn_virt_set_name(VM1, "1");

/* Create VM2 */
VM2 = lsdn_virt_new(net2);
lsdn_virt_connect(VM2, machine1, "tap1");
lsdn_virt_set_mac(VM2, LSDN_MK_MAC(0x92,0x89,0x90,0x93,0x61,0x75));
lsdn_virt_set_name(VM2, "2");

/* Create VM3 */
VM3 = lsdn_virt_new(net1);
lsdn_virt_connect(VM3, machine2, "tap0");
lsdn_virt_set_mac(VM3, LSDN_MK_MAC(0x42,0x94,0xa5,0xf9,0x69,0xc6));
lsdn_virt_set_name(VM3, "3");

/* Create VM4 */
VM4 = lsdn_virt_new(net2);
lsdn_virt_connect(VM4, machine2, "tap1");
lsdn_virt_set_mac(VM4, LSDN_MK_MAC(0xf2,0x9b,0x4f,0x48,0x2d,0xd1));
lsdn_virt_set_name(VM4, "4");

/* Claim local A or B */
struct lsdn_phys *local = lsdn_phys_by_name(ctx, argv[1]);
assert(local != NULL);
lsdn_phys_claim_local(local);

/* Commit the created netmodel */
lsdn_commit(ctx, lsdn_problem_stderr_handler, NULL);

lsdn_context_free(ctx);
return 0;

}

Afterwards compile the program for machines A and B and link them together with
the LSDN library. Call the resulting executables quickstart and run the respective
executables on the two machines:

• on A: $ ./quickstart A

• on B: $ ./quickstart B

Your network is now set-up using the C API. Try:

1.3. Quick-Start 9



LSDN Documentation

• in VM 1: $ ping 192.168.0.3

• in VM 2: $ ping 192.168.0.4

And they are correctly isolated too, since $ ping 192.168.0.2 won’t work in VM 1.

1.4 Network representation

The public API (either C API or Lsctl Configuration Files) gives you tools to build a model
of your virtual networks, which LSDN will then realize on top of the physical network,
using various tunneling technologies. You will need to tell LSDN both about the virtual
networks and the physical network they will be using.

There are three core concepts (objects) LSDN operates with: virtual machines, physi-
cal machines and virtual networks. In the rest of the guide (and in the source code) we
abbreviate them as virts, physes and nets. If you are wondering if there are any phys-
ical networks, then no, LSDN just expects that the physical machines are connected
together when needed and that is all.

The terminology is derived from the most common use case, but that does not mean
that virts really have to be virtual machines and physes must really be physical machines.
For example the virts could be Linux containers and physes could be virtual machines
running those containers.

The virts, physes and nets have the following relationships:

• virts always belong to one net (they can not be moved between nets)

• virts are connected at one of the physes (however, they can be reconnected at a
different phys, in other words, they can migrate)

• physes attach to a net – this tells LSDN that the phys will have virts connecting to
the network1.

Each of these objects can also have attributes – for example physes can have an IP ad-
dress (some network tunneling technologies require this information) and virts can
have a MAC address (network tunnels not supporting MAC learning require this in-
formation).

One of the attributes common to all objects is a name. A name does not have impact
on the functionality of the network, but you can use it to keep track of the object. If
you are using Lsctl Configuration Files, it is more or less mandatory, because it is the
only way to refer to an object if you want to change it at a later point (for example
when you want to migrate a virt). If you do not specify a name, one will be generated
for you. This ensures that the the export/dump mechanism will always be able to create
cross-references.

1 In theory LSDN could figure out if a phys should be attached to a net just by checking if any of its
virts are attached to that net. But we have decided to make this explicit. LSDN checks if physes connected
to the same net have certain properties (for example their IP address must use the same IP version) and
we did not want to make these checks implicit. A switch may be provided in future versions, though.

10 Chapter 1. User’s Documentation



LSDN Documentation

Collectively, the model is represented by a LSDN context, which contains all the physes,
virts and nets. Context is a well known concept in C libraries, which essentially replaces
global variables and ensures that the library can be safely used by multiple clients in
the same process.

Note: LSDN is not thread-safe. It assumes that a given context is never accessed
concurrently. Different context can be accessed concurrently.

1.4.1 Networks and their settings

LSCTL: net, settings

C API: lsdn_net_new() and various lsdn_settings_*.

Virtual networks are defined by their virtual network identifier (VID) and the settings
for the tunneling technology they should use. The VID is a numeric identifier used to
separate one virtual network from another and is mapped to VLAN IDs, VXLAN IDs
or similar identifiers. The allowed range of the VID is defined by the used tunneling
technology and must be unique among all networks of the same type2.

The used networking overlay technology (and any options related to that, like VXLAN
port) is encapsulated in the settings object, which serves as a template for the new
networks (with only the VID changing each time). A list of supported networking
technologies is in the chapter Supported tunneling technologies, including the additional
options they support.

Like other objects, networks can have a name. However, they do not have any other at-
tributes, since everything important for their functioning is part of the settings. Settings
can have names and lsctl reserves a the name default for unnamed settings.

1.4.2 Virts

LSCTL: virt

C API: lsdn_virt_new(), lsdn_virt_connect(), lsdn_virt_set_mac()

virts are the computers/virtual machines that are going to connect to the virtual net-
work. From LSDN’s standpoint, they are just network interfaces that exist on a phys
(usually tap for a virtual machine or veth for a container). LSDN does not care what is
on the other end.

When creating a virt you have to specify which virtual network it is going to be part of.
This can not be changed later. If you remove the network, all it’s virts will be removed
as well.

2 In theory, they could overlap if the nets are always connected to different physes (and so there are is
no ambiguity), but LSDN still checks that they are globally unique.

1.4. Network representation 11



LSDN Documentation

A virt also can not be part of multiple virtual networks. The recommended solution in
that case is to simply create one virt for each virtual network you are going to connect to.
In this sense virt can be described not as a virtual machine, but as a network interface
of a virtual machine.

Once created, you can specify which phys this virt will connect at and how is its network
interface named on that phys. If you are using LSCTL, just run virt with a new -phys
argument. In C API use lsdn_virt_connect(). If the virt was already connected, it will
be reconnected (migrated) to the new phys (you want to do this in sync with the final
stage of the migration of the virtual machine itself).

Like other objects, virts can have names for your convenience. The names do not have
to be unique globally, but just inside of a single net.

Depending on the networking technology used, you may also need to inform LSDN about
the virtual machine’s MAC address (currently only one MAC address can be assigned,
this may change in future versions). LSDN will use this MAC address for routing net-
work packets to the machine.

Firewall rules

LSCTL: rule

C API: lsdn_vr_new() and other functions (see Rules engine)

You can filter out specific packets based on their source/destination IP address range
and source/destination MAC address range. The filtering can be done independently
on ingress and egress traffic.

The filtering rules are organized by their priority. All rules inside a given priority must
match against the same target (a target is a masked part of an IP or MAC address – for
example first octet of the IP address) and must be unique. This restriction exists to
ensure that only deterministic rules can be defined.

Unfortunately, currently there is no way to ACCEPT packets early, as is common in e.g.
iptables.

QoS

LSCTL: rate

C API: lsdn_virt_set_rate_in(), lsdn_virt_set_rate_out()

You can limit the amount of traffic going in or out of the virt for each direction. There
are three settings:

• avg_rate provides the basic bandwidth limit

• burst_size allows the traffic to overshoot the limit for certain number of bytes

• burst_rate (optional) absolute bandwidth limit applied even if traffic is allowed to
overshoot avg_rate

12 Chapter 1. User’s Documentation



LSDN Documentation

If you do not want to allow any bursting, specify burst_rate equal to the maximum size
of a single packet (the MTU). Setting burst_rate to zero will not work.

1.4.3 Physes

LSCTL: phys, attach, claimLocal

C API: lsdn_phys_new(), lsdn_phys_set_ip(), lsdn_phys_claim_local()

physes are used to described the underlying physical machines that will run your virtual
machines.

You will tell LSDN which machine it is currently running on (using claimLocal or
lsdn_phys_claim_local()). LSDN will then make sure that the virts running on this
machine are connected to the rest of the virts running on the other machines.

If your machine has multiple separate network interfaces (not bonded), you will want
to create a new phys for each network interface on that machine and claim all such
physes as local. In this sense, a phys is not a physical machine but a network interface
of a physical machine.

This use-case is not meant for a case where both network interfaces are connected to
the same physical network and you just want to choose which one will be used. LSDN
does not support two physes claimed as local connecting to the same virtual network
for technical reasons, so it will not work.

Like other objects, physes can have names. They can also have and ip attribute, specify-
ing IP address for the network overlay technologies that require it.

1.4.4 Validation

LSCTL: validate

C API: lsdn_validate()

The validation step in LSDN serves to validate the network model. There are several
reasons why the validation step is present in LSDN. One reason is that when a network
model is being gradually built up using the C API the user does not have to worry too
much about the order in which network objects are being created as long as the final
netmodel is valid. The intermediate steps are not being checked on-the-fly. For exam-
ple when creating a virtual machine its MAC attribute may be specified just before com-
mitting the network model even though for a particular network type this information
may be mandatory (this is specified for each network type in networking technology).

Another advantage of this approach is that when there are problems detected during
the validation phase they will all get reported one by one. LSDN conveniently provides
a lsdn_problem_stderr_handler() function which will report every detected problem
on the standard error output. It is also possible to invoke the lsdn_validate() step with
a different error handler. This error handler must have the same function signature as
lsdn_problem_stderr_handler().

1.4. Network representation 13



LSDN Documentation

This way you can try some network scenario and if the validation reports to you some
problems it has detected in the network model you may fix all these issues at once and
perhaps the next network validation phase will succeed.

Every host participating in a network must share a compatible network representation.
This usually means that all hosts have the same model, presumably read from a com-
mon configuration file or installed through a single orchestrator. It is then necessary
to claim (or lsdn_phys_claim_local()) a phys as local, so that LSDN knows on which
machine it is running. Several restrictions also apply to the creation of networks in
LSDN.

Fixing all the issues present in your network model in the validation step greatly re-
duces the risk of creating inconsistent network models in the kernel and it also allevi-
ates the complexity of the creation of the individual network objects in the right order
inside the kernel.

The validation phase will ensure the network model does not violate any of the restric-
tions listed in Network Restrictions.

1.4.5 Commit

LSCTL: commit

C API: lsdn_commit()

Commiting a network model means telling LSDN to actually set-up the network inside
Linux kernel.

When we commit a network model the first thing LSDN does it validates the whole
network model. Only if the validation phase succeeds, the commit phase may proceed.
This way the user does not even need to be aware of the validation phase involved and
can only commit the netmodel when appropriate. This often eliminates the possibility
of getting the network in some undesirable state.

We need to be able to distinguish among network objects already created and commit-
ted in the kernel and network objects newly created, but not yet committed. LSDN will
keep track of the state of each network object. Basically what we need to do is to re-
member which objects are already present in the kernel in their most up-to-date state
and which objects have been newly created or updated since the last time they have
been committed (if ever) and which objects have been deleted. Each attribute you add,
remove from or change on a network object is considered as an update of this object.

If you want to know more about LSDN state management and also to view a diagram of
all states and transitions between these states have a look at the Netmodel implementation
section.

It is important to note that any updates exercised on the kernel data structures repre-
senting our network objects are only performed on local objects, where:

• phys is local iff it has been claimed local (either with claimLocal or
lsdn_phys_claim_local()),

• virt is local iff it is connected at a local phys.

14 Chapter 1. User’s Documentation



LSDN Documentation

However, local objects may sometimes need to be updated as a result of a non local
network object being added, updated or removed. E.g. when a MAC address of a non
local virt changes inside a network where this information is mandatory (such as in
static VXLAN networks) then local routing information in the kernel must be updated.

Also, there are transitive dependencies among the network objects. In particular, when:

• virt is deleted then all its Firewall rules and QoS are deleted as well,

• net is deleted then all its virts are deleted as well,

• phys is deleted then all virts attached to this phys are deleted as well,

• settings are deleted then all nets of this type are deleted as well.

After the initial validation step is completed, LSDN will then proceed with the actual
commit phase which is further subdivided into two subphases:

• decommit

• recommit

In the decommit subphase LSDN will consider all the network objects that need to be
either updated or deleted and it will delete both of these objects from the kernel data
structures. However, LSDN will keep track of those objects which have been initially
updated, but not deleted, as they will need to be committed back again in the next
subphase.

The second subphase is the recommit phase in which LSDN will iterate over all local
phys objects and commit any new or updated virts residing on this phys.

You can perhaps think of the whole commit phase as finding the smallest possible delta
between the objects ready to be committed and those already committed. In the special
case of committing for the very first time we can imagine we have only committed an
empty network model (which, by the way, is also possible to do).

Unfortunately, things can go wrong in the commit phase even when the network model
passes the validation phase. Depending on the phase at which an error occured we may
or may not be able to keep the network model consistent.

If an error occurs in the recommit phase, a limited rollback is performed and the kernel
rules remain in mixed state. Some objects may have been successfully committed, oth-
ers might still be in the old state because the commit failed. In such cases the user can
retry the commit to install the remaining objects.

If an error occurs in the decommit phase, however, there is no safe way to recover. Given
that kernel rules are not installed atomically and there are usually several rules tied to
an object, LSDN can’t know what is the installed state after rule removal fails. In this
case the model is considered to be in an inconsistent state. The only way to proceed is
to tear down the whole model and reconstruct it from scratch.

1.4. Network representation 15



LSDN Documentation

1.4.6 Error Handling

C API: lsdn_context_set_nomem_callback(), lsdn_context_abort_on_nomem(),
lsdn_err_t

During construction of the network model there are several things that can go wrong.
LSDN will report these errors to the user of the C API. All the possible error types are
grouped in lsdn_err_t.

A successful operation will return the LSDNE_OK error code.

When parsing an IP address of a phys or when parsing a MAC attribute of a virt the
operation may fail if the provided address is invalid. In that case LSDN will report this
as a LSDNE_PARSE error.

When assigning a name to a network object (such as virt, phys or net) the assignment
may fail with the LSDNE_DUPLICATE error code if an object of the same type with this
name already exists.

A LSDNE_NOIF error code will be returned when querying the recommended
MTU for a virt if the given virt has no locally assigned interface (see
lsdn_virt_get_recommended_mtu()).

A LSDNE_NETLINK error code is returned when LSDN is unable to establish a netlink
socket for communicating with the kernel.

LSDNE_VALIDATE is returned when the network model validation failed. This can hap-
pen while validating the network with validate or lsdn_validate(). It can also hap-
pen when committing the network model with commit or lsdn_commit(), because the
network model is always validated first. In the latter case of committing the network
model, the current network model will stay in effect.

The LSDNE_COMMIT error code means a network model commit failed and a mix of old,
new and dysfunctional objects are in effect. You may retry the commit and see if the
error was only temporary.

LSDNE_INCONSISTENT is more serious than the LSDNE_COMMIT failure, since the commit
operation can not be successfully retried. The only operation possible is to rebuild the
whole model again.

You may also encounter a LSDNE_NOMEM error. LSDN deals with out-of-memory errors
in the following fashion: whenever it fails to allocate dynamic memory it will call a
registered callback (if any) that may deal with this error as it sees fit. The callback is
registered with the lsdn_context_set_nomem_callback() function. It is possible to set
a default handler using lsdn_context_abort_on_nomem() function provided by LSDN.
This error handler will simply print an error message on the standard error output
and will immediately abort the program should any dynamic memory allocation fail.
Of course, you may register your own out-of-memory callback as long as the function
signature of the callback is that of lsdn_context_abort_on_nomem(). You can also use
the callback to implement a setjmp/longjmp error handling scheme.

If no nomem callback is registered (the default), the LSDNE_NOMEM error is simply re-
turned to the caller.

16 Chapter 1. User’s Documentation



LSDN Documentation

1.4.7 Debugging

The LSDN library and the lsctl tool both respect the LSDN_DEBUG environment variable.
If you have any problem when committing a model, try setting LSDN_DEBUG=nlerr to
print extended netlink messages. Alternatively, you can try LSDN_DEBUG=all for very
verbose output.

LSDN_DEBUG accepts a comma separated list of the following message categories:

Category Description
netops High-level network commit operations (add virt, phys etc.)
rules Creation and deletion of TC flower rules.
nlerr Errors returned from kernel (mostly netlink).
all All of the above

1.4.8 Supported tunneling technologies

Currently LSDN supports three network tunneling technologies: VLAN, VXLAN (in
three variants) and Geneve. They are all configured the same in LSDN (only the settings
differ), but it is important to realize what technology you are using and what restric-
tions it has.

Theoretically, you should be able to define your network model once and then switch
the networking technologies as you wish. But in practice some technologies may need
more detailed network models than others. For example, ovl_vxlan_mcast does not
need to known the MAC addresses of the virtual machines and ovl_vlan does not need
to know the IP addresses of the physical machines nor the MAC addresses of the virtual
machines.

VLAN

Available as: settings vlan (lsctl), lsdn_settings_new_vlan() (C API).

Also known as 802.1Q, VLAN is a Layer-2 tagging technology, that extends the Eth-
ernet frame with a 12-bit VLAN tag. LSDN needs no additional information to setup
this type of network, as it relies on the networking equipment along the way to route
packets (typically using MAC learning).

If either the physical network already uses VLAN tagging (the physical computers are
connected to a VLAN segment) or the virtual network will be using tagging, then the
networking equipment along the way must support this. The support is called 802.1ad
or sometimes QinQ.

Restrictions:

• 12 bit vid

• Physical nodes in the same virtual network must by located on the same
Ethernet network

1.4. Network representation 17



LSDN Documentation

• Care must be taken when nesting

VXLAN

VXLAN is a Layer-3 UDP-based tunneling protocol. It is available in three variants in
LSDN, depending on the routing method used. All of the variants need the connected
participating physical machines to have the IP attribute set and they must all see each
other on the IP network directly (no NAT).

VXLAN tags have 24 bits (16 million networks). VXLANs by default use UDP port
4789, but this is configurable and could in theory be used to expand the vid space.
LSDN currently does not do this.

Note: VXLANs support IPv6 addresses, but they can not be mixed with IPv4. All
physical nodes must use the same IP version and the version of multicast address for
Multicast VXLAN must be the same. This does not prevent you from using both IPv6
and IPv4 on the same physical node for other purposes than LSDN, you just have to
choose one version for the phys IP attribute.

Multicast

Available as: settings vxlan/mcast (lsctl), lsdn_settings_new_vxlan_mcast() (C API).

This is a self configuring variant of VXLANs. No further information for any machine
needs to be provided, because the VXLAN routes all unknown and broadcast packets
to a designated multicast IP address and the VXLAN iteratively learns the source IP
addresses. Hence the only additional information is the multicast group IP address.

Restrictions:

• 24 bit vid

• Physical nodes in the same virtual network must be reachable on the IP layer

• UDP and IP header overhead

• Requires multicast support

Endpoint-to-Endpoint

Available as: settings vxlan/e2e (lsctl), lsdn_settings_new_vxlan_e2e() (C API).

Partially self-configuring variant of VXLANs. LSDN must be informed about the IP
address of each physical machine participating in the network using the IP attribute. All
unknown and broadcast packets are sent to all the physical machines and the VXLAN
iteratively learns the IP address - MAC address mapping.

Restrictions:

18 Chapter 1. User’s Documentation



LSDN Documentation

• 24 bit vid

• Physical nodes in the same virtual network must be reachable on the IP layer

• UDP and IP header overhead

• Unknown and broadcast packets are duplicated for each physical machine

Fully static

Available as: settings vxlan/static (lsctl), lsdn_settings_new_vxlan_static() (C
API).

VXLAN with fully static packet routing. LSDN must be informed about the IP address
of each physical machine and the MAC address of each virtual machine participating in
the network. LSDN then constructs a routing table from this information. Broadcast
packets are duplicated and sent to all machines.

Restrictions:

• 24 bit vid

• Physical nodes in the same virtual network must be reachable on the IP layer

• UDP and IP header overhead

• Unknown and broadcast packets are duplicated for each physical machine

• The virtual network is not fully opaque (MAC addresses of virtual machines
must be known).

Geneve

Available as: settings geneve (lsctl), lsdn_settings_new_geneve() (C API).

Geneve is a Layer-3 UDP-based tunneling protocol. All participating physical machines
must see each other on the IP network directly (no NAT).

Geneve uses fully static routing. LSDN must be informed about the IP address of each
physical machine (using IP attribute) and MAC address of each virtual machine partici-
pating in the network.

Restrictions:

• 24 bit vid

• Physical nodes in the same virtual network must be reachable on the IP layer

• UDP and IP header overhead

• Unknown and broadcast packets are duplicated for each physical machine

• The virtual network is not fully opaque (MAC addresses of virtual machines
must be known).

1.4. Network representation 19



LSDN Documentation

No tunneling

Available as: settings direct (lsctl), lsdn_settings_new_direct() (C API).

No separation between the networks. You can use this type of network for corner cases,
like connecting a VM serving as an internet gateway to a dedicated interface. In this
case no separation is needed nor desired.

Network Restrictions

Certain restrictions apply to the set of possible networks and their configurations that
can be created using LSDN. Anywhere where the keyword mandatory is written in
the following list with regards to a network type, please refer to Supported tunneling
technologies to see if the rule applies to a given network type:

• You can not assign the same MAC address to two different virts that are part of
the same net,

• Any two nets of the same network type must not be assigned the same virtual
network identifier,

• Any two VXLAN networks sharing the same phys, where one network is of type
Fully static and the other is either of type Endpoint-to-Endpoint or Multicast, must
use different UDP ports,

• A virt must be explicitly assigned a MAC address when this is mandatory for a
given network type,

• IP address has been specified for a phys if it hosts a net where this information is
mandatory,

• No duplicate IP addresses were specified for any two phys,

• All phys attached to the same net have the same IP versions of their IP addresses,

• While trying to connect a virt to a net on phys, the phys is attached to net,

• Interface specified for virt exists,

• No duplicate MAC addresses were specified for any two virts connected to the
same net if this attribute is mandatory for a given network type,

• Any two nets created on the same phys have compatible network types,

• The virtual network identifier is within the allowed range for a given network
type where this is mandatory,

• No two nets of the same network type have the same virtual network identifier,

• No two rules on the same virt sharing the same priority have different match
targets or masks,

• Two rules on the same virt sharing the same priority are not equal,

• QoS rates specified for a virt are within the allowed range (rate).

20 Chapter 1. User’s Documentation



LSDN Documentation

1.5 Lsctl Configuration Files

LSDN has its own configuration language for describing the network topology. If you
saw the Quick-Start or Network representation sections, you have already seen examples
of the configuration files.

1.5.1 Syntax

The configuration syntax is actually based on the TCL language – but you do not have
to be afraid, this guide is self-contained. You might not even guess TCL is there if we
did not tell you. However, it is good to know TCL is there if you need more advanced
stuff, like variable substitution or loops. And if you know TCL, you will recognize
some of the conventions and feel at home.

The only downside is that you have to include a short boilerplate at the top of each
configuration file to tell TCL that you don’t want to prefix everything with lsdn::. Start
your configuration file with this line:

namespace import lsdn::*

The configuration file itself is a list of directives that tell LSDN what objects the net-
work consists of, how they are configured and how they connect. The directives are
terminated by a newline. Other white-space is not significant. All available directives
are listed in section Directive reference.

All LSDN directives follow the same basic patterns. They start with the directive name
(for example net or settings) and are followed with argument for that directive. Direc-
tives and their arguments are separated by white-space. Some directives go without
an argument. Other directives make use of named arguments (or as they are called in
some languages “keyword arguments”):

directiveWithNamedArgs -opt1 value1 -opt2 value2 -opt3WithoutAnyValue

The directives may combine named and regular arguments. In that case, consult the
documentation for the particular directive, if the regular (non-keyword) arguments
should be placed before or after the keyword ones.

If you need the directive to span multiple lines, use the backslash \ continuation char-
acter as you do in shell:

virt -name critical_server_with_unknown_purpose -if enps0 \
-mac F9:9B:81:C2:66:F9 -net service_net

1.5.2 Names

Objects (physical machines, virtual machines etc.) in LSCTL are given names, to allow
you to refer to them later. The name must be given when a configuration directive is

1.5. Lsctl Configuration Files 21

https://www.tcl.tk/


LSDN Documentation

used to create an object. You are free to choose any name you like, as the names do not
have any direct impact on the network.

Please note that forward references are not allowed, because in its core LSCTL is a
procedural language. For example, this snippet will not work:

virt -net test
net -vid 1 test {}

Any directive referencing an undefined object will return an error like this:

can not find network

The order must be swapped like this:

net -vid 1 test {}
virt -net test

If a directive references an undefined object, it will print a stack-trace and the script
execution will end.

1.5.3 Nesting

Some directives may also contain other directives. In that case, the nested directives
are enclosed in curly-braces {} following the parent directive like this1:

phys -name p
net 42 {

virt -name a -phys p
attach p

}

Nested directives are used to simplify definition of related elements. The example
above specifies a virtual machine a connected to network 42. The connection is im-
plied from the nesting. The nesting is quite flexible and you can decide to use a style
that most suits you and that reflects organization of your network. An equivalent way
to write the example above would be:

phys -name p
net 42
virt -name a -net 42 -phys p
attach -phys p -net 42

Or:

net 42
phys -name p {

virt -name a -net 42
(continues on next page)

1 If you are familiar with TCL, you will recognize this is how TCL control-flow commands work.

22 Chapter 1. User’s Documentation



LSDN Documentation

(continued from previous page)
}
attach -phys p -net 42

Or:

net 42 {
phys -name p {

virt -name a
}

}

Note that there is no need for attach in the last example, since nesting took care of it
for us.

In general, nesting can be used anywhere you would otherwise have to specify a re-
lationship using arguments. Other nestings are disallowed. The supported nestings
are:

• virt in net = virt will be connected to the net

• virt in phys = virt will be connected at this phys

• net in phys = phys will be attached to the net

• phys in net = phys will be attached to the net

• attach in net = net will be attached to phys given as argument

• attach in phys = nets given as arguments will be attached to phys

• detach follows the same rules

• claimLocal in phys = phys will be claimed as local

Some directives are only settings for one object (and do not imply any relationship).
These are the rate (for virt QoS) and rules (for virt firewall) directives. They must be
nested under a virt directive.

1.5.4 Argument types

int
An integer number, given as string of digits optionally prefixed with a sign.
LSCTL recognizes the 0x prefix for hexadecimal and 0 for octal integers.

string
String arguments in LSCTL are given the same way as in shell - they don’t need
to be quoted. Mostly they are used for names, so there is no need to give string
arguments containing spaces.

If you want to give a directive an argument containing spaces, newlines or curly
brackets, simply enclose the argument in double-quotes. If you want the argu-
ment to contain double-quotes, backslash or dollar sign, precede the character
with backslash:

1.5. Lsctl Configuration Files 23



LSDN Documentation

virt -name "really\$bad\\idea
on so many levels"

If you need the full syntax definition, refer to man tcl.n on your system.

direction
Either in or out. in is for packets entering the virtual machine, out is for packets
leaving the virtual machine.

ip
IP address, either IPv6 or IPv4. Common IPv6 and IPv4 formats are supported.

For exact specification, refer to inet_pton function in C library.

Examples:

2a00:1028:8380:f86::2
192.168.56.1

subNet
IP address optionally followed by / and prefix size. If the prefix size is not given,
it is equivalent to 128 for IPv6 and 32 for IPv4, that is subnet containing the single
IP address.

Instead of writing a prefix after the /, a network mask can be given, using the
same format as for the IP address.

Examples:

2a00:1028:8380:f86::2
2a00:1028:8380:f86::0/64
192.168.56.0/24
192.168.56.0/255.255.255.0

mac
MAC address in octal format. Both addresses with colons and without colons are
supported, as long as the colons are consistent. Case-insensitive

9F:1A:C1:4C:EE:0B
9f1ac14cee0b

size
An unsigned decimal integer specifying a number of bytes. Suffices kb, mb, gb
and bit, kbit, mbit, gbit can be given to change the unit. All units are 1024-base
(not 1000), despite their SI names. This is for compatibility with the tc tool from
iproute package, which uses the same units.

speed
An unsigned decimal integer specifying a number of bytes per second.

Supported units are the same as for size.

24 Chapter 1. User’s Documentation

https://en.wikipedia.org/wiki/International_System_of_Units


LSDN Documentation

1.5.5 Directive reference

net name -vid -settings -phys -remove { . . . }
Define new virtual network or change an existing one.

C API equivalents: lsdn_net_new(), lsdn_net_by_name().

Parameters

• vid (int) – Virtual network identifier. Network technologies
like VXLANs or VLANs use these numbers to separate differ-
ent networks. The ID must be unique among all networks of
the same network type. The parameter is forbidden if network
already exists. The permissible range of network identifiers dif-
fers for individual network types (see Network representation).

• name (string) – Name of the network. Does not change network
behavior, only used by the configuration to refer to the network.
However, if the -vid argument is not specified, this name argu-
ment will also specify the vid.

• phys (string) – Optional name of a phys you want to attach to
this network. Shorthand for using the attach directive. Can not
be used when nested inside phys directive.

• settings (string) – Optional name of a previously defined set-
tings, specifying the network overlay type (VLAN, VXLAN
etc.). If not given, the default settings will be used. Settings
of existing net can not be changed.

• remove – Optional, remove the network. This will effectively
also remove any child object (e.g. any virt inside this network).

Scopes

• none – This directive can appear at root level.

• phys – Automatically attaches the parent phys to this network.
Shorthand for using the attach directive.

phys -name -if -ip -net -remove -ifClear -ipClear
Define a new physical machine or change an existing one.

C API equivalents: lsdn_phys_new(), lsdn_phys_by_name().

Parameters

• name (string) – Optional, name of the physical machine. Does
not change network behavior, only used by the configuration to
refer to the phys.

• if (string) – Optional, set the network interface name this phys
uses to communicate with the physical network.

• ip (ip) – Optional, set the IP address assigned to the phys on
the physical network.

1.5. Lsctl Configuration Files 25



LSDN Documentation

• net (string) – Optional, name of a net you want this phys to
attach to. Shorthand for using the attach directive. Can not be
used when nested inside net directive.

• remove – Optional, remove the physical machine. This will ef-
fectively also disconnect any virt residing on this machine.

• ifClear – Optional, clear the machine’s interface name, if any.

• ipClear – Optional, clear the IP address of the phys, if any.

Scopes

• none – This directive can appear at root level.

• net – Automatically attaches this phys to the parent network.
Shorthand for using the attach directive.

virt -net -name -mac -phys -if -remove -macClear
Define a new virtual machine or change an existing one.

C API equivalents: lsdn_virt_new(), lsdn_virt_by_name().

Parameters

• net (string) – The virtual network this virt should be part of.
Mandatory if creating new virt, forbidden if changing an exist-
ing one. Forbidden if nested inside net.

• name (string) – Optional, name of the virtual machine. Does
not change network behavior, only used by the configuration
to refer to this virt.

• mac (mac) – Optional, MAC address used by the virtual machine.

• phys (string) – Optional, connect (or migrate, if already con-
nected) at a given phys.

• if (string) – Set the network interface used by the virtual ma-
chine to connect at the phys. Mandatory, if -phys argument was
used.

• remove – Optional, remove the virtual machine.

• macClear – Optional, clear the virtual machine’s MAC address,
if any.

Scopes

• none – This directive can appear at root level.

• net – Equivalent with giving the -net parameter and thus mu-
tually exclusive.

• phys – Equivalent with giving the -phys parameter and thus
mutually exclusive

attach -phys -net

26 Chapter 1. User’s Documentation



LSDN Documentation

attach -phys netlist

attach -net physlist
Attaches a given physical machine(s) to a virtual network(s). The command can
either attach a single phys to a single net (using the -phys and -net arguments)
or to multiple nets at once (using the -phys argument and positional arguments)
or attach multiple physes to a single network (using the -net argument and po-
sitional arguments).

If scoped, the -net or -phys arguments are implicit, so you can easily attach a phys
to multiple nets like this:

phys test {
attach net1 net2

}

Scopes

• root – This directive can appear at root level.

• net – Equivalent with giving the -net parameter and thus mu-
tually exclusive.

• phys – Equivalent with giving the -phys parameter and thus
mutually exclusive

detach -phys -net

detach -phys netlist

detach -net physlist
Detaches the virtual networks from physical machines. See attach for syntax of
the command.

rule direction prio action -srcIp -dstIp -srcMac -dstMac
Add a new firewall rule for a given virt. The rule applies if all the matches spec-
ified by the arguments are satisfied.

C API equivalents: lsdn_vr_new() and other functions (see Rules engine)

Parameters

• direction (direction) – Direction of the packets.

• prio (int) – Priority of the rule. Rules with lower numbers are
matched first.

• action (string) – Currently only drop action is supported.

• srcIp (subNet) – Match if the source IP address of the packet is
in the given subnet.

• dstIp (subNet) – Match if the destination IP address of the
packet is in the given subnet.

1.5. Lsctl Configuration Files 27



LSDN Documentation

• srcMac (mac) – Match if the source MAC address of the packet
is equal to the given one.

• dstMac (mac) – Match if the source MAC address of the packet
is equal to the given one.

Scopes

• virt – Only allowed in a virt scope.

flushVr
Remove all virt firewall rules defined by rule previously.

Scopes

• virt – Only allowed in a virt scope.

rate direction -avg -burst -burstRate
Limit bandwidth in a given direction. If no arguments are given, all limits are
lifted.

C API equivalents: lsdn_virt_set_rate_in(), lsdn_virt_set_rate_out(),
lsdn_virt_clear_rate_in(), lsdn_virt_clear_rate_out().

Parameters

• direction (direction) – Direction to limit.

• avg (speed) – Average speed allowed.

• burstRate (speed) – Higher speed allowed during short bursts.

• burst (size) – Size of the burst during which higher speeds are
allowed.

Scopes

• virt – Only allowed in a virt scope.

claimLocal -phys
Inform LSDN that it is running on this physical machine.

You might want to distribute the same configuration file to all physical machines,
just with different physical machines claimed as local. You can use the follow-
ing command to allow the control of the local phys using the first command-line
argument to the script:

claimLocal [lindex $argv 0]

After that, invoke lsctl like this:

lsctl <your script> <local phys>

C API equivalents: lsdn_phys_claim_local().

Parameters

• phys (string) – The phys to mark as local.

28 Chapter 1. User’s Documentation



LSDN Documentation

Scopes

• none – This directive can appear at root level.

• phys – Equivalent to specifying the -phys parameter.

settings type
Set a network overlay type for newly defined networks. Use one of the concrete
overloads below.

settings direct -name
Do not use any network separation.

See No tunneling for more details.

Parameters

• name (string) – Optional, creates a non-default named setting.
Use the net -setting argument to select.

Scopes

• none – This directive can only appear at root level.

settings vlan -name
Use VLAN tagging to separate networks.

See VLAN for more details.

Parameters

• name (string) – Optional, creates a non-default named setting.
Use the net -setting argument to select.

Scopes

• none – This directive can only appear at root level.

settings vxlan/mcast -name -mcastIp -port
Use VXLAN tunnelling with automatic setup using multicast.

See Multicast VXLAN for more details.

Parameters

• name (string) – Optional, creates a non-default named setting.
Use the net -setting argument to select.

• mcastIp (ip) – Mandatory, the IP address used for VXLAN
broadcast communication. Must be a valid multicast IP ad-
dress.

• port (int) – Optional, the UDP port used for VXLAN commu-
nication.

Scopes

• none – This directive can only appear at root level.

1.5. Lsctl Configuration Files 29



LSDN Documentation

settings vxlan/e2e -name -port
Use VXLAN tunnelling with endpoint-to-endpoint communication and MAC
learning.

See Endpoint-to-Endpoint VXLAN for more details.

Parameters

• name (string) – Optional, creates a non-default named setting.
Use the net -setting argument to select.

• port (int) – Optional, the UDP port used for VXLAN commu-
nication.

Scopes

• none – This directive can only appear at root level.

settings vxlan/static -name -port
Use VXLAN tunnelling with fully static setup.

See Fully static VXLAN for more details.

Parameters

• name (string) – Optional, creates a non-default named setting.
Use the net -setting argument to select.

• port (int) – Optional, the UDP port used for VXLAN commu-
nication.

Scopes

• none – This directive can only appear at root level.

settings geneve -name -port
Use Geneve tunnelling with fully static setup.

See Geneve for more details.

Parameters

• name (string) – Optional, creates a non-default named setting.
Use the net -setting argument to select.

• port (int) – Optional, the UDP port used for Geneve commu-
nication.

Scopes

• none – This directive can only appear at root level.

commit
Apply all changes done so far. This will usually be located at the end of each
LSCTL script.

If the validation or commit fails, the errors will be printed to stderr and the di-
rective will end with an error. The script will be terminated.

30 Chapter 1. User’s Documentation



LSDN Documentation

C API equivalents: lsdn_commit()

Scopes

• none – This directive can only appear at root level.

validate
Check the network model for errors.

If the validation fails, the errors will be printed to stderr and the directive will
end with an error. The script will be terminated.

C API equivalents: lsdn_validate()

Scopes

• none – This directive can only appear at root level.

cleanup
Revert all changes done so far.

If the cleanup fails, the errors will be printed to stderr and the directive will end
with an error. The script will be terminated.

C API equivalents: lsdn_context_cleanup()

Scopes

• none – This directive can only appear at root level.

show -tcl -json
Show the network model so far. Shows even changes that are not yet commited.

Parameters

• tcl – Dump the network model in LSCTL format.

• json – Dump the network model in JSON format.

C API equivalents: lsdn_dump_context_tcl(), lsdn_dump_context_json().

Scopes

• none – This directive can only appear at root level.

free
Free all the resources used by LSDN, but do not revert the changes. This is useful
for memory leak debugging (Valgrind etc.).

C API equivalents: lsdn_context_free()

Scopes

• none – This directive can only appear at root level.

1.5.6 Command-line tools

The LSCTL configuration language is accepted by the command-line tools lsctl and
lsctld. The one you should choose depends on your use-case. lsctl is used for simple

1.5. Lsctl Configuration Files 31



LSDN Documentation

run-and-forget configuration, while lsctld runs in the background and supports virtual
machine migration and other types of network evolution.

Using lsctl

Run lsctl with the name of your configuration script like this:

lsctl my_configuration.lsctl

You can also pass additional arguments to lsctl, which will be all available in the $argv
variable. See claimLocal for an example use.

If you run lsctl without arguments, you will receive an interactive shell, where you
can enter directives one after another.

Using lsctld and lsctlc

If you want to migrate machines, you have to keep a lsctld daemon running in the
background, so that it can remember the current state of the network and make changes
appropriately. You can send new configuration directives to the daemon using the
lsctlc command.

First, let’s decide on the location of the control socket for lsctld. lsctld uses a regular
Unix socket that can be located anywhere on the file-system, so let’s use /var/run/lsdn:

lsctld -s /var/run/lsdn

Afterwards, commands can be sent to lsctld using lsctlc. Either pass them on stan-
dard input:

cat my_configuration.lsctl | lsctlc /var/run/lsdn

Or directly on the command-line:

lsctlc /var/run/lsdn virt -name vm1 -phys b -net customer
lsctlc /var/run/lsdn commit

lsctld can be controlled with the following options:

--socket, -s
Specify the location of the Unix control socket (mandatory).

--pidfile, -p
Specify the location of the PID file. lsctldwill use the PID file to prevent multiple
instances from running and it can be used for daemon management.

If the option is not specified, no PID file will be created.

-f
Run in foreground, do not daemonize.

32 Chapter 1. User’s Documentation



LSDN Documentation

TCL extension (tclsh)

Instead of using the lsctl command-line tool, you can use TCL directly and load LSDN
as an extension. This will allow you to combine LSDN with larger TCL programs and
run it using tclsh. This can be done using the regular TCL means:

package require lsdn
namespace import lsdn::*

net test { ... }

1.6 Examples

Now is the right time to describe through a couple of examples how LSDN can actually
be used. The following are very simple (but complete nonetheless) examples of virtual
networks that can be set up through LSDN. They should be descriptive enough to get
you started with your own use-cases.

1.6.1 Example 1 - Basic Principles

In the first example let’s imagine we have three computers, A, B and C, and that we
are managing the networking infrastructure of two local businesses - a bookstore and a
bakery. The local businesses have their own software running inside virtual machines
(VMs) hosted by our three computers A, B and C. It is expected that the virtual ma-
chines of the bookstore will be able to communicate with each other on the network
and likewise the VMs of the bakery.

It is also very desirable for the network traffic sent between the VMs of the bookstore
not to be seen by the VMs of the bakery and vice versa.

The three computers hosting the two companies are perhaps connected to the same
LAN, but it may not necessarily be the case as they quite as well might each be on a
different continent. We don’t really care. We only assume that A, B and C are able to
send messages to each other. Without any further ado let’s present the first complete
LSDN network configuration file. Afterwards, we will split the example into smaller
chunks and explain each section in detail.

namespace import lsdn::*

settings vxlan/static -name vxlan

phys -if eth0 -name A -ip 172.16.0.1
phys -if eth0 -name B -ip 172.16.0.2
phys -if eth0 -name C -ip 172.16.0.3

net -vid 1 Bookstore -settings vxlan {
(continues on next page)

1.6. Examples 33



LSDN Documentation

(continued from previous page)
attach A B C
virt -phys A -if 1 -mac 00:00:00:00:00:a1
virt -phys A -if 2 -mac 00:00:00:00:00:a2
virt -phys B -if 1 -mac 00:00:00:00:00:b1
virt -phys C -if 1 -mac 00:00:00:00:00:c1

}

net -vid 2 Bakery -settings vxlan {
attach A B
virt -phys A -if 3 -mac 00:00:00:00:00:a3
virt -phys B -if 2 -mac 00:00:00:00:00:b2

}

claimLocal [lindex $argv 0]
commit
free

It might also be handy to actually see in picture how our networking infrastructure will
look like once we’re done:

Machine A

Machine B

Machine C

eth0

eth0

eth0

VM 1

VM 2

VM 3

VM 6

VM 4

VM 5

1

1

2

3

2

1

Fig. 1.2: Virtual networks in Example 1
On three physical machines we host 6 VMs, pertaining to two different virtual networks.

Now let’s step through our configuration file, starting with:

34 Chapter 1. User’s Documentation



LSDN Documentation

settings vxlan/static -name vxlan

This line will create a VXLAN static virtual network settings, named vxlan. As we
haven’t specified any port for this network settings, the default VXLAN UDP port will
be used (VXLAN).

The following lines

phys -if eth0 -name A -ip 172.16.0.1
phys -if eth0 -name B -ip 172.16.0.2
phys -if eth0 -name C -ip 172.16.0.3

describe three physical machines, or rather just three physical interfaces present on
our three machines. We have given each interface a name, which corresponds to the
name of the interface on the respective machines. And finally we have also set an IPv4
address for those three interfaces. It should be noted that it is expected that the physical
interfaces have already been assigned an IP address and that they have been brought up
as well. Maybe you’re asking yourself why did we bother to specify the IP addresses of
the interfaces in the configuration file then? That’s because this information is needed
when we are using the VXLAN tunnels.

net -vid 1 Bookstore -settings vxlan {
attach A B C
virt -phys A -if 1 -mac 00:00:00:00:00:a1
virt -phys A -if 2 -mac 00:00:00:00:00:a2
virt -phys B -if 1 -mac 00:00:00:00:00:b1
virt -phys C -if 1 -mac 00:00:00:00:00:c1

}

Afterwards we describe a virtual network we are going to set up for the bookstore.
We will call this virtual network conveniently just Bookstore. The Bookstore network
will be tunneled through the VXLAN tunnels. We have assigned the network a virtual
network identifier 1. The network will span all the machines A, B and C - that’s what
we have written with the attach statement. The next line describes a virtual machine
that will reside on machine A. It will connect via an interface which is simply called 1
(yes, interface can have arbitrary names). We have also assigned a MAC address to this
virtual machine. Again, LSDN expects that an interface called 1 is already present on
the physical machine A and that it is assigned the same MAC address we have given
it in the configuration file. Similarly, the next three lines describe three other virtual
machines inside the Bookstore network.

In a very similar fashion we have created a Bakery virtual network:

net -vid 2 Bakery -settings vxlan {
attach A B
virt -phys A -if 3 -mac 00:00:00:00:00:a3
virt -phys B -if 2 -mac 00:00:00:00:00:b2

}

It has two virtual machines, but this time the virtual network spans only the physical
machines A and B. Note that the Bakery virtual network is again going to be tunneled

1.6. Examples 35



LSDN Documentation

inside a VXLAN tunnel, only with a different network identifier 2.

This line:

claimLocal [lindex $argv 0]

will instruct LSDN which machine it should consider as being local. How this com-
mand exactly works is described in claimLocal.

If we don’t want to perform just a dry run then we’d better tell LSDN to take the network
model it has constructed up to this point parsing the configuration file and write (or
commit in LSDN terminology) the model into the appropriate kernel data structures.
That’s exactly what’s being done with the single command:

commit

The last line:

free

instructs LSDN to clean up it’s internal network model stored in memory. For details
consult free. Especially note this does not delete the networks stored in the kernel.

That was our first complete example. Now it remains to distribute this configuration
file (let’s name it example1.lsctl) to our three computers A, B and C. You may be won-
dering whether we didn’t forget to show you two other configuration files so that we
would have three files that we could then distribute to our three machines. In a moment
you will see why it’s not actually needed.

On machine A type:

lsctl example1.lsctl A

Similarly on machine B:

lsctl example1.lsctl B

and on machine C:

lsctl example1.lsctl C

By passing the command line parameter A, B or C to lsctl on the appropriate nodes,
LSDN will be able to distinguish which machines are local.

That’s it. Now your customers should be able to communicate inside the virtual net-
works we have just created.

Keeping all our networking configuration in a single file will hopefully make it easier
for us to keep the networks in sync. But it is by no means the only way how to configure
your networks using LSDN. You may perhaps prefer to keep and edit a configuration
file on each physical machine separately; or you may have a separate configuration file
for each virtual network. The possibilities are plentiful.

36 Chapter 1. User’s Documentation



LSDN Documentation

1.6.2 Example 2 - VM Migration

In the second example we will focus on one very important aspect of virtual network-
ing - the problem of virtual machine migration. There are many reasons why we might
want to migrate virtual machines between physical machines hosting them. For exam-
ple we would like to do some planned maintenance on one of the physical machines
so we need to take all the VMs hosted on this machine and migrate them (seamlessly
if possible) to a different host in our infrastructure.

Let’s jump right in and list the contents of the second configuration file which we’re
going to name example2-1.lsctl:

namespace import lsdn::*

settings vxlan/static

phys -if eth0 -name A -ip 172.16.0.1
phys -if eth0 -name B -ip 172.16.0.2
phys -if eth0 -name C -ip 172.16.0.3

net 1 {
attach A B C
virt -phys A -if 1 -mac 00:00:00:00:00:a1 -name migrator
virt -phys A -if 2 -mac 00:00:00:00:00:a2
virt -phys B -if 1 -mac 00:00:00:00:00:b1
virt -phys C -if 1 -mac 00:00:00:00:00:c1

}

If you’re not recognizing any of the syntax used in this configuration file, please refer
to Example 1 - Basic Principles.

We will run the following commands on node A:

lsctld -s /var/run/lsdn/example2.sock
lsctlc /var/run/lsdn/example2.sock < example2-1.lsctl
lsctlc /var/run/lsdn/example2.sock claimLocal A
lsctlc /var/run/lsdn/example2.sock commit

and similarly on node B:

lsctld -s /var/run/lsdn/example2.sock
lsctlc /var/run/lsdn/example2.sock < example2-1.lsctl
lsctlc /var/run/lsdn/example2.sock claimLocal B
lsctlc /var/run/lsdn/example2.sock commit

and node C:

lsctld -s /var/run/lsdn/example2.sock
lsctlc /var/run/lsdn/example2.sock < example2-1.lsctl
lsctlc /var/run/lsdn/example2.sock claimLocal C
lsctlc /var/run/lsdn/example2.sock commit

1.6. Examples 37



LSDN Documentation

Again, the VMs inside the virtual network should now be able to reach each other on
the network.

Maybe after some time we realize it would be better to move the migrator VM from
node A to node B. We instruct LSDN to migrate this virtual machine with the following
commands run on each of the machines A, B and C:

lsctlc /var/run/lsdn/example2.sock virt -phys B -if 2 -name migrator -net 1
lsctlc /var/run/lsdn/example2.sock commit

What effectively happened is the migrator VM was disconnected from the virtual net-
work on node A and reconnected back again on node B.

It is important to note we have to perform this update on all nodes A, B and C. Had
we decided to create for example a VLAN virtual network then we would not have
to update the LSDN netmodel on machine C. Regardless of the network settings type
(e.g. VXLAN, GENEVE) created for out virtual networks, it is always safe to run the
same updates on all physical machines hosting the virtual networks even if some nodes
might not be impacted by any of the performed change.

1.6.3 Example 3 - Traffic Shaping

In this example we are going to build on the Example 1 - Basic Principles, but this time
we are going to demonstrate ways how we can shape the network traffic inside out
virtual networks. We will shape the traffic with firewall and Quality of Service (QoS
for short) rules. These rules will be specified for individual VMs. It will be somewhat
of a contrived example, but it will demonstrate the concepts well. There will be just
one virtual network with four VMs (A, B, C and D). Schematically the scenario will
look like this:

A
------------

40kb

B
------------

20kb
C

------------
10kb

D
------------

20kb

The VMs will be able to send network packets only along the edges in the figure above.

38 Chapter 1. User’s Documentation



LSDN Documentation

The virtual network is also shaping the outgoing network bandwidth of each VM (al-
located bandwidth is depicted inside each node).

A transcription of this network setup with LSDN:

namespace import lsdn::*

settings vlan

phys -if eth0 -name a

net 1 {
attach a
virt -phys a -if 1 -name A {

rule out 1 drop -dstIp 192.168.0.3
rule out 2 drop -dstIp 192.168.0.4
rule in 3 drop -srcIp 192.168.0.2
rule in 4 drop -srcIp 192.168.0.3

rate out -avg 40kb -burstRate 40kb -burst 40kb
}
virt -phys a -if 2 -name B {

rule out 1 drop -dstIp 192.168.0.1
rule in 2 drop -srcIp 192.168.0.3
rule in 3 drop -srcIp 192.168.0.4

rate out -avg 20kb -burstRate 20kb -burst 20kb
}
virt -phys a -if 3 -name C {

rule out 1 drop -dstIp 192.168.0.1
rule out 2 drop -dstIp 192.168.0.2
rule in 3 drop -srcIp 192.168.0.1
rule in 4 drop -srcIp 192.168.0.4

rate out -avg 10kb -burstRate 10kb -burst 10kb
}
virt -phys a -if 4 -name D {

rule out 1 drop -dstIp 192.168.0.2
rule out 2 drop -dstIp 192.168.0.3
rule in 1 drop -srcIp 192.168.0.1

rate out -avg 20kb -burstRate 20kb -burst 20kb
}

}

claimLocal [lindex $argv 0]
commit
free

Let’s have a look at all the firewall and QoS rules of one of the virtual machines:

1.6. Examples 39



LSDN Documentation

virt -phys a -if 2 -name B {
rule out 1 drop -dstIp 192.168.0.1
rule in 2 drop -srcIp 192.168.0.3
rule in 3 drop -srcIp 192.168.0.4

rate out -avg 20kb -burstRate 20kb -burst 20kb
}

The first rule will drop any outgoing traffic with destination IP address 192.168.0.1.
The next two rules will drop any traffic incoming from IP addresses 192.168.0.3 or
192.168.0.4. If you take a look at the diagram of our virtual network these are exactly
the firewall rules that will ensure that VM B will be able to send packets to VM C and
VM D, but not to VM A and will be able receive packets only from VM A. The last rule
installs a QoS rule. It sets the bandwidth for VM B with an average rate, burst rate and
burst all set to 20kb. All the rate parameters are described in rate.

Similarly you can check the rules for VM A, VM C and VM D and see for yourself they
match with our indentation from the sketch above.

You should already be comfortable with the rest of the instructions in the configuration
file. If not, please start with Example 1 - Basic Principles.

It’s a fun exercise to build distributed software that keeps broadcasting a single (UDP)
packet with content “A” from within VM A to all other VMs in the virtual network at
the maximum rate possible. Each other VM upon reception of a packet will append it’s
own name to the contents of the packet and broadcast this amended packet to all other
VMs in the virtual network. VM A upon reception of a packet will dump this packet
in a log file and drop this packet. What patterns do you expect to see in this log file
after some time?

1.7 C API

LSDN is primarily designed as a shared library that can be linked to any program, e.g.,
a cloud orchestrator service. This guide should give you the necessary information for
using LSDN as a C library.

1.7.1 Overview

Networks, physes and virts are each represented by a corresponding struct. In addi-
tion, settings are its own type of object represented by a struct. This is to allow reusing
settings between virtual networks. All these structs are opaque to users of the library
and you have to use function calls to modify them, set attributes, etc.

Every LSDN object is also directly or indirectly associated with a context. The context
basically represents the network model as a whole. It allows you to commit it to kernel
tables, configure common behaviors such as handling out-of-memory conditions, and
simplify memory management.

40 Chapter 1. User’s Documentation



LSDN Documentation

Your application will typically have exactly one context. Through it you can create
networks, physes and virts, like you would with lsctl.

You can modify the network model in memory as much as you like. To apply the
changes and install the network model, you need to commit it to kernel tables. After
a commit, you can continue modifying the model; subsequent commits will apply the
changes.

1.7.2 Object life-cycle

Objects are created by calling lsdn_<type>_new. This requires an argument through
which the new object is linked to the model: context (for settings and physes), settings
(for networks), or network (for virts).

These functions return a pointer to a newly allocated struct of the appropriate type.
You can use this pointer to set attributes (see below), construct child objects, perform
actions like attaching a virt to a phys, etc.

You can also destroy the object by calling lsdn_<type>_free. This ensures that the object
is deinitialized properly and the network model remains in a consistent state. All child
objects are also destroyed. Because of this behavior, you don’t need to keep track of
all created objects in your program. Specifically, due to everything being ultimately
associated with a context, lsdn_context_free will safely deallocate all memory.

Note that in the current version, it is impossible to walk the context to find all child
objects. If you want to modify an object later, you need keep track of its reference – or
find it by name.

1.7.3 Attributes

Many objects have configurable attributes, such as IP addresses, MAC addresses and
similar. For each attribute, you get a collection of functions:

lsdn_<type>_get_<attr>
lsdn_<type>_set_<attr>
lsdn_<type>_clear_<attr>

In addition, there is a special attribute, name. You can specify a name for any object,
and then look it up by calling lsdn_<type>_by_name. Names must be unique for a given
type of object.

There is no clear method for names. However, if you need to do that for whatever
reason, you can set the name to NULL.

1.7.4 Network model life-cycle

The network model representation in memory consists of a context and various child
objects associated with it. As a whole, it represents virtual network topology with

1.7. C API 41



LSDN Documentation

attached virts and their connections through physes. This is all nice, but in order for
the model to do something, it must be converted to TC rules and installed into kernel
tables.

Once a model is constructed, you must mark a phys as local, by calling
lsdn_phys_claim_local(). This sets up the viewpoint for rule generation. Afterwards,
calling lsdn_commit() will walk the model, generate rules and install them into the ker-
nel. There is no real-time connection between memory representation of the network
model and the kernel rules. All changes to the model are only reflected in the kernel
after a call to lsdn_commit().

After you’re done with your program, you have two choices for deleting the model
from memory. A call to lsdn_context_free() will deallocate the model, but keep rules
in kernel as they are. If you want to remove the rules, call lsdn_context_cleanup(),
which will both delete the model and uninstall the kernel rules – as if you deleted all
objects manually and then performed a commit with an empty model.

Commits are not atomic, and lsdn_commit can fail in two distinct ways. In the better
case, an error prevented installing a particular object, and the kernel rules are a mix of
the old and the new network model. This is represented by LSDNE_COMMIT error code.
You can retry the commit and LSDN will attempt to apply the remaining changes.

In the current version, there is no way to examine the network model and directly find
out which changes were applied and which were not. However, the problem callback
supplied to lsdn_commit will be notified of failed objects.

In the worse case, a rule removal will fail and the kernel rules will remain in an in-
consistent state, not corresponding to a valid network model. This is indicated by LS-
DNE_INCONSISTENT error code. It is impossible to recover from this condition, you need
to call lsdn_context_cleanup() and start over.

1.7.5 Reference

Learn more about individual kinds of objects and their functions.

Context

group context
Context, commits and high level network model management.

LSDN context is a core object that manages the network model. It allows the app
to keep track of constraints (such as unique names, no two virts using the same
interface, etc.), validate the model and commit it to kernel tables.

Context also keeps track of all the child objects (settings, networks, virts, phy-
ses, names, etc.) and automatically frees them when it is deleted through
lsdn_context_free or lsdn_context_cleanup.

In practically every conceivable case, a single app should only have one context;
in fact, only one context should exist per physical host. The library allows you to

42 Chapter 1. User’s Documentation



LSDN Documentation

have multiple contexts at the same time (which is equivalent to having multiple
instances of an app), but in such case, the user is responsible for conflicting rules
on interfaces. In other words: don’t do this, things will probably crash and burn
if you do.

Typedefs

typedef void(*lsdn_nomem_cb)(void *user)
Signature for out-of-memory callback.

Functions

struct lsdn_context* lsdn_context_new(const char * name)
Create new LSDN context.

Initialize a lsdn_context struct and set its name to name. The returned struct
must be freed by lsdn_context_free or lsdn_context_cleanup after use.

Return NULL if allocation failed, pointer to new lsdn_context otherwise.

Parameters

• name: Context name.

void lsdn_context_set_nomem_callback(struct lsdn_context * ctx,
lsdn_nomem_cb cb, void * user)

Configure out-of-memory callback.

By default, LSDN will return an error code to indicate that an allocation
failed. This function allows you to set a callback that gets called to handle
this condition instead.

Parameters

• ctx: LSDN context.

• cb: Callback function.

• user: User data for the callback function.

void lsdn_context_abort_on_nomem(struct lsdn_context * ctx)
Configure the context to abort on out-of-memory.

This sets the out-of-memory callback to a predefined function that prints an
error to stderr and aborts the program.

It is recommended to use this, unless you have a specific way to handle out-
of-memory conditions.

See lsdn_abort_cb

Parameters

• ctx: LSDN context.

1.7. C API 43



LSDN Documentation

void lsdn_context_free(struct lsdn_context * ctx)
Free a LSDN context.

Deletes the context and all its child objects from memory. Does not delete
TC rules from kernel tables.

Use this before exiting your program.

Parameters

• ctx: Context to free.

void lsdn_context_cleanup(struct lsdn_context * ctx, lsdn_problem_cb cb, void
* user)

Clear a LSDN context.

Deletes the context and all its child objects from memory. Also deletes con-
figured TC rules from kernel tables.

Use this to deinitialize the LSDN context and tear down the virtual network.

Parameters

• ctx: Context to cleanup.

• cb: Problem callback for encountered errors.

• user: User data for the problem callback.

void lsdn_context_set_overwrite(struct lsdn_context * ctx, bool overwrite)
Configure rule overwriting.

By default, LSDN will overwrite existing tc rules and network interfaces.
This is to ensure that rules created by previous crashed instances do not
cause problems. Set this flag to false to prevent overwriting existing rules.

Parameters

• ctx: LSDN context.

• overwrite: true if LSDN should overwrite existing kernel objects.
false if it should fail if the kernel object already exists.

bool lsdn_context_get_overwrite(struct lsdn_context * ctx)
Query if LSDN should overwrite any of the interfaces or rules.

Return value of overwrite flag.

See lsdn_context_set_overwrite

lsdn_err_t lsdn_validate(struct lsdn_context * ctx, lsdn_problem_cb cb, void
* user)

Validate network model.

Walks the currently configured in-memory network model and checks for
problems. If problems are found, an error code is returned. Problem call-
back is also invoked for every problem encountered.

44 Chapter 1. User’s Documentation



LSDN Documentation

Parameters

• ctx: LSDN context.

• cb: Problem callback.

• user: User data for the problem callback.

Return Value

• LSDNE_OK: No problems detected.

• LSDNE_VALIDATE: Some problems detected.

lsdn_err_t lsdn_commit(struct lsdn_context * ctx, lsdn_problem_cb cb, void
* user)

Commit network model to kernel tables.

Calculates tc rules based on the current network model, and its difference
from the previously committed network model, and applies the changes.
After returning successfully, the current network model is in effect.

Performs a model validation (equivalent to calling lsdn_validate) and returns
an error if it fails. Afterwards, works through the memory model in two
phases:

• In decommit phase, rules belonging to modified (or deleted) objects are
removed from kernel tables. Deleted objects are also freed from mem-
ory.

• In recommit phase, new rules are installed that correspond to new objects
or new properties of objects that were removed in the previous phase.

If an error occurs in the recommit phase, a limited rollback is performed
and the kernel rules remain in mixed state. Some objects may have been
successfully committed, others might still be in the old state because the
commit failed. In such case, LSDNE_COMMIT is returned and the user can
retry the commit, to install the remaining objects.

If an error occurs in the decommit phase, however, there is no safe way to re-
cover. Given that kernel rules are not installed atomically and there are usu-
ally several rules tied to an object, LSDN can’t know what is the installed
state after rule removal fails. In this case, LSDNE_INCONSISTENT is re-
turned and the model is considered to be in an inconsistent state. The only
way to proceed is to tear down the whole model and reconstruct it from
scratch.

Parameters

• ctx: LSDN context.

• cb: Problem callback.

• user: User data for the problem callback.

Return Value

1.7. C API 45



LSDN Documentation

• LSDNE_OK: Commit was successful. New network model is now active
in kernel.

• LSDNE_VALIDATE: Model validation found problems. Old network
model remains active in kernel.

• LSDNE_COMMIT: Errors were encountered during commit. Kernel is in
mixed state, it is possible to retry.

• LSDNE_INCONSISTENT: Errors were encountered when decommitting
rules. Model state is inconsistent with kernel state. You have to start
over.

struct lsdn_context
#include <lsdn.h> LSDN Context.

The base object of the LSDN network model. There should be exactly one
instance in your program. See Context.

Phys (host machine)

group phys
Functions for manipulating and configuring phys objects.

Phys is a representation of a physical machine that hosts tenants of virtual net-
works. Its interface attribute specifies the name of the network interface that is
connected to the host network. In addition, some network types require IP ad-
dresses of physes.

In order to start connecting virts, a phys must be attached to a virtual network.
That only marks the phys as a participant in that network; a single phys can be
attached to any number of networks.

In the network model, all physes must be represented on all machines. To
select the current machine and configure network viewpoint, you must call
lsdn_phys_claim_local. Kernel rules are then generated from the viewpoint of that
phys.

It is possible to have multiple physes on the same machine and claimed local.
This is useful in situations where the host machine has more than one interface
connecting to a host network, or if the machine connects to more than one host
network.

Defines

lsdn_mk_phys_name(ctx)
Generate unique name for a phys.

See lsdn_mk_name

Parameters

46 Chapter 1. User’s Documentation



LSDN Documentation

• ctx: LSDN context.

Functions

struct lsdn_phys* lsdn_phys_new(struct lsdn_context * ctx)
Create a new phys.

Allocates and initializes a lsdn_phys structure.

Return newly allocated lsdn_phys structure.

Parameters

• ctx: LSDN context.

lsdn_err_t lsdn_phys_set_name(struct lsdn_phys * phys, const char * name)
Set a name for phys.

Parameters

• phys: Phys.

• name: New name string. Can be NULL.

Return Value

• LSDNE_OK: Name set successfully.

• LSDNE_DUPLICATE: Phys with the same name already exists.

• LSDNE_NOMEM: Failed to allocate memory for name.

const char* lsdn_phys_get_name(struct lsdn_phys * phys)
Get the phys’s name.

Return pointer to phys’s name.

Parameters

• phys: Phys.

struct lsdn_phys* lsdn_phys_by_name(struct lsdn_context * ctx, const char
* name)

Find a phys by name.

Return lsdn_phys structure if a phys with this name exists. NULL otherwise.

Parameters

• ctx: LSDN context.

• name: Requested name.

1.7. C API 47



LSDN Documentation

void lsdn_phys_free(struct lsdn_phys * phys)
Free a phys.

Ensures that all virts on this phys are disconnected first.

Parameters

• phys: Phys.

lsdn_err_t lsdn_phys_attach(struct lsdn_phys * phys, struct lsdn_net * net)
Attach phys to a virtual network.

Marks the phys as a participant in virtual network net. This must be done
before any virts are allowed to connect to net through this phys.

You can attach a phys to multiple virtual networks.

Parameters

• phys: Phys.

• net: Virtual network.

Return Value

• LSDNE_OK: Attachment succeeded

• LSDNE_NOMEM: Failed to allocate memory for attachment.

void lsdn_phys_detach(struct lsdn_phys * phys, struct lsdn_net * net)
Detach phys from a virtual network.

After detaching, virts won’t be allowed to connect to a given network
through this phys.

Warning This will not disconnect currently connected virts. They must be
disconnected explicitly. Otherwise, the next commit will fail validation.

Parameters

• phys: Phys.

• net: Virtual network.

lsdn_err_t lsdn_phys_claim_local(struct lsdn_phys * phys)
Assign a local phys.

All participants in a LSDN network must share a compatible memory model.
That means that every host’s model contains all the physes in the network.
This function configures a particular phys to be the local machine. Only
rules related to virts on the local phys are entered into the kernel tables.

lsdn_err_t lsdn_phys_unclaim_local(struct lsdn_phys * phys)
Unassign a local phys.

See lsdn_phys_claim_local

48 Chapter 1. User’s Documentation



LSDN Documentation

lsdn_err_t lsdn_phys_set_ip(struct lsdn_phys * object, lsdn_ip_t value)
Set IP address of a phys .

Parameters

• object: phys to modify.

• value: IP address .

const lsdn_ip_t* lsdn_phys_get_ip(struct lsdn_phys * object)
Get IP address of a phys .

The pointer is valid until the attribute is changed or object freed.

Return value of IP address attribute, or NULL if unset.

Parameters

• object: phys to query.

void lsdn_phys_clear_ip(struct lsdn_phys * object)
Clear IP address of a phys .

Parameters

• object: phys to modify.

lsdn_err_t lsdn_phys_set_iface(struct lsdn_phys * object, const char * value)
Set interface of a phys .

Parameters

• object: phys to modify.

• value: interface .

const char* lsdn_phys_get_iface(struct lsdn_phys * object)
Get interface of a phys .

The pointer is valid until the attribute is changed or object freed.

Return value of interface attribute, or NULL if unset.

Parameters

• object: phys to query.

void lsdn_phys_clear_iface(struct lsdn_phys * object)
Clear interface of a phys .

Parameters

• object: phys to modify.

1.7. C API 49



LSDN Documentation

struct lsdn_phys
#include <lsdn.h> Phys.

Represents a kernel interface for a host node, e.g., eth0 on lsdn1. Physes are
attached to network, and then virts can connect through them. See Phys (host
machine).

See Virt (virtual machine).

See Virtual network.

Virtual network

group network
Functions, and related data types, for manipulating network objects and their
settings.

Virtual network is a collection of virts that can communicate with each other as if
they were on the same LAN. At the same time, they are isolated from other virtual
networks, as well as from the host network. Distinct virtual networks can have
hosts with same MAC addresses, and it is impossible to read packets belonging
to other networks (or the host network), or send packets that travel outside the
virtual network.

The lsdn_net object represents a network in the sense of “collection of virts”.
Apart from basic life-cycle and lookup functions, it is only possible to add or
remove virts to/from it.

Configuration of network properties is done through separate lsdn_settings ob-
jects. There is a lsdn_<kind>_settings_new function for each kind of network en-
capsulation, with different required parameters. It is also possible to register user
hooks for startup and shutdown events.

An exception to this is the vnet_id property, which is set on a network directly, as
opposed to being a part of settings. It configures the VNET (or encapsulation ID)
of the network. That means that several networks can share a common settings
object while still being differentiated by vnet_id.

Network object management

struct lsdn_net* lsdn_net_new(struct lsdn_settings * settings, uint32_t vnet_id)
Create a new network.

Creates a virtual network object with id vnet_id, configured by s.

Multiple networks can share the same lsdn_settings, as long as they differ by
vnet_id.

Return newly allocated lsdn_net structure.

50 Chapter 1. User’s Documentation



LSDN Documentation

lsdn_err_t lsdn_net_set_name(struct lsdn_net * net, const char * name)
Set a name for the network.

const char* lsdn_net_get_name(struct lsdn_net * net)
Get the network’s name.

struct lsdn_net* lsdn_net_by_name(struct lsdn_context * ctx, const char * name)
Find a network by name.

Return lsdn_net structure if a network with this name exists.

Return NULL otherwise.

void lsdn_net_free(struct lsdn_net * net)
Free a network.

Ensures that all virts in the network are freed and all physes detached.

Network settings

struct lsdn_settings* lsdn_settings_new_direct(struct lsdn_context * ctx)
Create settings for a new direct network.

Return new lsdn_settings instance.

Parameters

• ctx: LSDN context.

struct lsdn_settings* lsdn_settings_new_vlan(struct lsdn_context * ctx)
Create settings for a new VLAN network.

Return new lsdn_settings instance.

Parameters

• ctx: LSDN context.

struct lsdn_settings* lsdn_settings_new_vxlan_mcast(struct
lsdn_context * ctx,
lsdn_ip_t mcast_ip,
uint16_t port)

Create settings for a new VXLAN-multicast network.

Return new lsdn_settings instance.

Parameters

• ctx: LSDN context.

• mcast_ip: Multicast group IP address.

• port: UDP port for VXLAN tunnel.

1.7. C API 51



LSDN Documentation

struct lsdn_settings* lsdn_settings_new_vxlan_e2e(struct lsdn_context * ctx,
uint16_t port)

Create settings for a new VXLAN-e2e network.

Return new lsdn_settings instance.

Parameters

• ctx: LSDN context.

• port: UDP port for VXLAN tunnel.

struct lsdn_settings* lsdn_settings_new_vxlan_static(struct lsdn_context
* ctx, uint16_t port)

Create settings for a new VXLAN-static network.

Return new lsdn_settings instance.

Parameters

• ctx: LSDN context.

• port: UDP port for VXLAN tunnel.

struct lsdn_settings* lsdn_settings_new_geneve(struct lsdn_context * ctx,
uint16_t port)

Create settings for a new GENEVE network.

Return new lsdn_settings instance.

Parameters

• ctx: LSDN context.

• port: UDP port for GENEVE tunnel.

struct lsdn_settings* lsdn_settings_new_geneve_e2e(struct lsdn_context * ctx,
uint16_t port)

Create settings for a new GENEVE network.

Return new lsdn_settings instance.

Parameters

• ctx: LSDN context.

• port: UDP port for GENEVE tunnel.

void lsdn_settings_free(struct lsdn_settings * settings)
Free settings object.

Deletes the settings object and all lsdn_net objects that use it.

52 Chapter 1. User’s Documentation



LSDN Documentation

void lsdn_settings_register_user_hooks(struct lsdn_settings * set-
tings, struct lsdn_user_hooks
* user_hooks)

Configure user hooks.

Associates a lsdn_user_hooks structure with settings.

lsdn_err_t lsdn_settings_set_name(struct lsdn_settings * s, const char
* name)

Assign a name to settings.

Return Value

• LSDNE_OK: if the name is successfully set.

• LSDNE_DUPLICATE: if this name is already in use.

const char* lsdn_settings_get_name(struct lsdn_settings * s)
Get settings name.

Return name of the settings struct.

struct lsdn_settings* lsdn_settings_by_name(struct lsdn_context * ctx, const
char * name)

Find settings by name.

Searches the context for a named lsdn_settings object and returns it.

Return Pointer to lsdn_settings with this name.

Return NULL if no settings with that name exist in the context.

Parameters

• ctx: LSDN context.

• name: Requested name

Defines

lsdn_mk_net_name(ctx)
Generate unique name for a net.

See lsdn_mk_name

Parameters

• ctx: LSDN context.

lsdn_mk_settings_name(ctx)
Generate unique name for a settings object.

See lsdn_mk_name

1.7. C API 53



LSDN Documentation

Parameters

• ctx: LSDN context.

struct lsdn_user_hooks
#include <lsdn.h> User callback hooks.

Configured as part of lsdn_settings, this structure holds the callback hooks
for startup and shutdown, and their custom data.

Public Members

void(*lsdn_startup_hook)(struct lsdn_net *net, struct lsdn_phys *phys,
void *user)

Startup hook.

Called at commit time for every local phys and every network to which
it is attached.
Parameters

• net: network.
• phys: attached phys.
• user: receives the value of lsdn_startup_hook_user.

void* lsdn_startup_hook_user
Custom value for lsdn_startup_hook.

void(*lsdn_shutdown_hook)(struct lsdn_net *net, struct lsdn_phys *phys,
void *user)

Shutdown hook.

void* lsdn_shutdown_hook_user
Custom value for lsdn_shutdown_hook.

struct lsdn_net
#include <lsdn.h> Virtual network.

Network is a collection of virts that can communicate with each other. See
Virtual network.

See Virt (virtual machine).

See Phys (host machine).

struct lsdn_settings
#include <lsdn.h> Configuration structure for a virtual network.

Multiple networks can share the same settings (e.g. VXLAN with static rout-
ing on port 1234) and only differ by their identifier (VLAN id, VNI. . . ). See
Virtual network.

54 Chapter 1. User’s Documentation



LSDN Documentation

Virt (virtual machine)

group virt
Functions for manipulating and configuring virt objects.

Virt is a representation of a tenant in the virtual network. By default, it does not
need any attributes. However, you can configure its MAC address on the virtual
network (required for some network types), and set inbound and outbound QoS
rates.

Virt is created as part of a network, but to participate in the network, it must first
be connected, through a phys and a network interface on that phys. It is possible
to disconnect a virt and reconnect it on a different phys, e.g., when the VM is
migrated to a different physical host. The migration is transparent to the virtual
network, but obviously, the virt is unreachable while disconnected.

Defines

lsdn_mk_virt_name(ctx)
Generate unique name for a virt.

See lsdn_mk_name

Parameters

• ctx: LSDN context.

Functions

struct lsdn_virt* lsdn_virt_new(struct lsdn_net * net)
Create a new virt.

Creates a virt as part of net.

Return newly allocated lsdn_virt structure.

void lsdn_virt_free(struct lsdn_virt * vsirt)
Free a virt.

struct lsdn_net* lsdn_virt_get_net(struct lsdn_virt * virt)
Get the virt’s network.

Return lsdn_net object of the network that this virt is part of.

Parameters

• virt: Virt object.

lsdn_err_t lsdn_virt_set_name(struct lsdn_virt * virt, const char * name)
Set a name for the virt.

1.7. C API 55



LSDN Documentation

const char* lsdn_virt_get_name(struct lsdn_virt * virt)
Get the virt’s name.

struct lsdn_virt* lsdn_virt_by_name(struct lsdn_net * net, const char * name)
Find a virt by name.

Return lsdn_virt structure if a network with this name exists.

Return NULL otherwise.

lsdn_err_t lsdn_virt_connect(struct lsdn_virt * virt, struct lsdn_phys * phys,
const char * iface)

Connect a virt to its network.

Associates a virt with a given phys and a network interface, and ensures that
this interface will receive the network’s traffic.

See lsdn-public

Parameters

• virt: virt to connect.

• phys: phys on which the virt exists.

• iface: name of Linux network interface on the given phys, which
will receive the virt’s traffic.

void lsdn_virt_disconnect(struct lsdn_virt * virt)
Disconnects a virt from its network.

Disconnected virt will no longer be able to send and receive traffic.

lsdn_err_t lsdn_virt_get_recommended_mtu(struct lsdn_virt * virt, unsigned
int * mtu)

Get recommended MTU for a given virt.

Calculates the appropriate MTU value, taking into account the network’s
tunneling method overhead.

The MTU is based on the current state and connection port of the virt (it is
not based on the committed state). The phys interface must already exist.

Parameters

• virt: Virt object.

• mtu: Pointer into which the MTU is stored.

Return Value

• LSDNE_OK: Operation was successful.

• LSDNE_NETLINK: Netlink communication error.

• LSDNE_NOIF: Virt’s connected interface does not exist.

56 Chapter 1. User’s Documentation



LSDN Documentation

lsdn_err_t lsdn_virt_set_mac(struct lsdn_virt * object, lsdn_mac_t value)
Set MAC address of a virt .

Parameters

• object: virt to modify.

• value: MAC address .

const lsdn_mac_t* lsdn_virt_get_mac(struct lsdn_virt * object)
Get MAC address of a virt .

The pointer is valid until the attribute is changed or object freed.

Return value of MAC address attribute, or NULL if unset.

Parameters

• object: virt to query.

void lsdn_virt_clear_mac(struct lsdn_virt * object)
Clear MAC address of a virt .

Parameters

• object: virt to modify.

lsdn_err_t lsdn_virt_set_rate_in(struct lsdn_virt * object,
lsdn_qos_rate_t value)

Set inbound bandwidth limit of a virt .

Parameters

• object: virt to modify.

• value: inbound bandwidth limit .

const lsdn_qos_rate_t* lsdn_virt_get_rate_in(struct lsdn_virt * object)
Get inbound bandwidth limit of a virt .

The pointer is valid until the attribute is changed or object freed.

Return value of inbound bandwidth limit attribute, or NULL if unset.

Parameters

• object: virt to query.

void lsdn_virt_clear_rate_in(struct lsdn_virt * object)
Clear inbound bandwidth limit of a virt .

Parameters

• object: virt to modify.

1.7. C API 57



LSDN Documentation

lsdn_err_t lsdn_virt_set_rate_out(struct lsdn_virt * object,
lsdn_qos_rate_t value)

Set outbound bandwidth limit of a virt .

Parameters

• object: virt to modify.

• value: outbound bandwidth limit .

const lsdn_qos_rate_t* lsdn_virt_get_rate_out(struct lsdn_virt * object)
Get outbound bandwidth limit of a virt .

The pointer is valid until the attribute is changed or object freed.

Return value of outbound bandwidth limit attribute, or NULL if unset.

Parameters

• object: virt to query.

void lsdn_virt_clear_rate_out(struct lsdn_virt * object)
Clear outbound bandwidth limit of a virt .

Parameters

• object: virt to modify.

struct lsdn_qos_rate_t
#include <lsdn.h> Bandwidth limit for virt’s interface (for one direction).

See lsdn_virt_set_rate_out

See lsdn_virt_set_rate_in

Public Members

float avg_rate
Bandwidth restriction in bytes per second.

uint32_t burst_size
A size of data burst that is allowed to exceed the avg_rate.

It is not possible to leave this field zero, because no packets would go
through. Since each packet is considered as a short burst, the burst rate
must be at least as big as your MTU.

float burst_rate
An absolute restriction on the bandwidth in bytes per second, even dur-
ing bursting.

If zero is given, the peak rate is unrestricted.

58 Chapter 1. User’s Documentation



LSDN Documentation

struct lsdn_virt
#include <lsdn.h> Virt.

A virtual machine (typically it may be any Linux interface).

Virts are tenants in networks. They must be connected through a phys. They
can be migrated between physes at runtime. See Virt (virtual machine).

See Phys (host machine).

See Virtual network.

Rules engine

group rules
Virt rules engine configuration.

LSDN supports a basic firewall filtering. It is possible to set up packet rules
matching several criteria (source or destination addresses or ranges, tunnel key
ID) and assign them to inbound or outbound queues of a particular virt. Cur-
rently, the firewall can only drop matching packets. There is no support for cre-
ating custom firewall actions.

lsdn_vr is its own kind of object, tied to a virt. It can either be created preconfig-
ured to match something, or set as empty and configured later.

Rules are evaluated in order of increasing priority. The lower the priority value,
the higher the actual priority.

Defines

LSDN_MAX_MATCHES
Maximum number of match targets per rule.

In this implementation, a rule can match on at most two simultaneous ob-
jects (e.g. MAC address and IPv4 address).

LSDN_VR_PRIO_MIN
Minimum Virt Rule priority.

LSDN_VR_PRIO_MAX
Upper limit for Virt Rule priority.

Actual priority must be strictly lower than this.

LSDN_PRIO_FORWARD_DST_MAC
Use this priority if you want your rule to take place during forwarding de-
cisions.

1.7. C API 59



LSDN Documentation

Enums

enum lsdn_direction
Virt rule direction.

Values:

LSDN_IN
Inbound rule.

LSDN_OUT
Outbound rule.

enum lsdn_rule_target
Rule target.

Values:

LSDN_MATCH_NONE
Do not match.

LSDN_MATCH_SRC_MAC
Match source MAC.

LSDN_MATCH_DST_MAC
Match destination MAC.

LSDN_MATCH_SRC_IPV4
Match source IPv4 address.

LSDN_MATCH_DST_IPV4
Match destination IPv4 address.

LSDN_MATCH_SRC_IPV6
Match source IPv6 address.

LSDN_MATCH_DST_IPV6
Match destination IPv6 address.

LSDN_MATCH_ENC_KEY_ID
Match tunnel key ID.

LSDN_MATCH_ENC_KEY_SRC_IPV4
Match tunnel source IP address .

LSDN_MATCH_ENC_KEY_SRC_IPV6
Match tunnel source IP address .

LSDN_MATCH_ENC_KEY_DST_IPV4
Match tunnel source IP address .

LSDN_MATCH_ENC_KEY_DST_IPV6
Match tunnel source IP address .

LSDN_MATCH_COUNT
Guard value.

60 Chapter 1. User’s Documentation



LSDN Documentation

See LSDN_ENUM for details.

Functions

struct lsdn_vr* lsdn_vr_new(struct lsdn_virt * virt, uint16_t prio, enum
lsdn_direction dir, struct lsdn_vr_action * a)

Create a virt rule.

Creates a rule with a given priority, to match packets to or from a given virt,
and assigns an action when the rule is matched.

Rule created with this function does not match anything. It must be config-
ured through one or more of the lsdn_vr_add_<match> functions.

Return New lsdn_vr struct.

Parameters

• virt: Virt to which the rule applies.

• prio_num: Rule priority. Lower number = higher priority.

• dir: Inbound or outbound rule.

• a: Assigned action when rule matches.

void lsdn_vr_free(struct lsdn_vr * vr)
Deallocate a rule.

Parameters

• vr: Rule to deallocate.

void lsdn_vrs_free_all(struct lsdn_virt * virt)
Deallocate all rules for a virt.

Parameters

• virt: Virt whose rules will be removed.

void lsdn_vr_add_masked_src_mac(struct lsdn_vr * rule, lsdn_mac_t mask,
lsdn_mac_t value)

Configure virt rule to match source MAC with a mask.

Parameters

• rule: Virt rule.

• mask: Mask value.

• value: Match value.

static void lsdn_vr_add_src_mac(struct lsdn_vr * rule, lsdn_mac_t value)
Configure virt rule to match a specified source MAC .

1.7. C API 61



LSDN Documentation

Parameters

• rule: Pointer to virt rule.

• value: Match value.

static struct lsdn_vr* lsdn_vr_new_masked_src_mac(struct lsdn_virt * virt,
enum lsdn_direction dir,
uint16_t prio,
lsdn_mac_t value,
lsdn_mac_t mask, struct
lsdn_vr_action * action)

Create virt rule matching source MAC with a mask.

Return New lsdn_vr struct.

Parameters

• virt: LSDN virt.

• dir: Incoming or outgoing rule.

• prio: Rule priority.

• value: Match value.

• mask: Mask value.

• action: Rule action.

static struct lsdn_vr* lsdn_vr_new_src_mac(struct lsdn_virt * virt, enum
lsdn_direction dir, uint16_t prio,
lsdn_mac_t value, struct
lsdn_vr_action * action)

Create virt rule matching a specified source MAC .

Return New lsdn_vr struct.

Parameters

• virt: LSDN virt.

• dir: Incoming or outgoing rule.

• prio: Rule priority.

• value: Match value.

• action: Rule action.

void lsdn_vr_add_masked_dst_mac(struct lsdn_vr * rule, lsdn_mac_t mask,
lsdn_mac_t value)

Configure virt rule to match destination MAC with a mask.

Parameters

• rule: Virt rule.

62 Chapter 1. User’s Documentation



LSDN Documentation

• mask: Mask value.

• value: Match value.

static void lsdn_vr_add_dst_mac(struct lsdn_vr * rule, lsdn_mac_t value)
Configure virt rule to match a specified destination MAC .

Parameters

• rule: Pointer to virt rule.

• value: Match value.

static struct lsdn_vr* lsdn_vr_new_masked_dst_mac(struct lsdn_virt * virt,
enum lsdn_direction dir,
uint16_t prio,
lsdn_mac_t value,
lsdn_mac_t mask, struct
lsdn_vr_action * action)

Create virt rule matching destination MAC with a mask.

Return New lsdn_vr struct.

Parameters

• virt: LSDN virt.

• dir: Incoming or outgoing rule.

• prio: Rule priority.

• value: Match value.

• mask: Mask value.

• action: Rule action.

static struct lsdn_vr* lsdn_vr_new_dst_mac(struct lsdn_virt * virt, enum
lsdn_direction dir, uint16_t prio,
lsdn_mac_t value, struct
lsdn_vr_action * action)

Create virt rule matching a specified destination MAC .

Return New lsdn_vr struct.

Parameters

• virt: LSDN virt.

• dir: Incoming or outgoing rule.

• prio: Rule priority.

• value: Match value.

• action: Rule action.

1.7. C API 63



LSDN Documentation

void lsdn_vr_add_masked_src_ip(struct lsdn_vr * rule, lsdn_ip_t mask,
lsdn_ip_t value)

Configure virt rule to match source IP address with a mask.

Parameters

• rule: Virt rule.

• mask: Mask value.

• value: Match value.

static void lsdn_vr_add_src_ip(struct lsdn_vr * rule, lsdn_ip_t value)
Configure virt rule to match a specified source IP .

Parameters

• rule: Pointer to virt rule.

• value: Match value.

static struct lsdn_vr* lsdn_vr_new_masked_src_ip(struct lsdn_virt * virt,
enum lsdn_direction dir,
uint16_t prio,
lsdn_ip_t value,
lsdn_ip_t mask, struct
lsdn_vr_action * action)

Create virt rule matching source IP with a mask.

Return New lsdn_vr struct.

Parameters

• virt: LSDN virt.

• dir: Incoming or outgoing rule.

• prio: Rule priority.

• value: Match value.

• mask: Mask value.

• action: Rule action.

static struct lsdn_vr* lsdn_vr_new_src_ip(struct lsdn_virt * virt, enum
lsdn_direction dir, uint16_t prio,
lsdn_ip_t value, struct
lsdn_vr_action * action)

Create virt rule matching a specified source IP .

Return New lsdn_vr struct.

Parameters

• virt: LSDN virt.

64 Chapter 1. User’s Documentation



LSDN Documentation

• dir: Incoming or outgoing rule.

• prio: Rule priority.

• value: Match value.

• action: Rule action.

void lsdn_vr_add_masked_dst_ip(struct lsdn_vr * rule, lsdn_ip_t mask,
lsdn_ip_t value)

Configure virt rule to match destination IP address with a mask.

Parameters

• rule: Virt rule.

• mask: Mask value.

• value: Match value.

static void lsdn_vr_add_dst_ip(struct lsdn_vr * rule, lsdn_ip_t value)
Configure virt rule to match a specified destination IP .

Parameters

• rule: Pointer to virt rule.

• value: Match value.

static struct lsdn_vr* lsdn_vr_new_masked_dst_ip(struct lsdn_virt * virt,
enum lsdn_direction dir,
uint16_t prio,
lsdn_ip_t value,
lsdn_ip_t mask, struct
lsdn_vr_action * action)

Create virt rule matching destination IP with a mask.

Return New lsdn_vr struct.

Parameters

• virt: LSDN virt.

• dir: Incoming or outgoing rule.

• prio: Rule priority.

• value: Match value.

• mask: Mask value.

• action: Rule action.

1.7. C API 65



LSDN Documentation

static struct lsdn_vr* lsdn_vr_new_dst_ip(struct lsdn_virt * virt, enum
lsdn_direction dir, uint16_t prio,
lsdn_ip_t value, struct
lsdn_vr_action * action)

Create virt rule matching a specified destination IP .

Return New lsdn_vr struct.

Parameters

• virt: LSDN virt.

• dir: Incoming or outgoing rule.

• prio: Rule priority.

• value: Match value.

• action: Rule action.

Variables

struct lsdn_vr_action LSDN_VR_DROP
DROP rule action.

Packet matching a rule with this action will be dropped.

struct lsdn_vr
#include <rules.h> Virt rule.

Represents a packet rule assigned to a virt. The rule has a priority, assigned
direction (affecting incoming or outgoing packets), and an action. Usually,
the rule will also have match conditions, such as IP or MAC address mask.

See lsdn_vr_new See Rules engine.

struct lsdn_vr_action
#include <rules.h> Virt rule action.

Represents an action to be performed on a packet that matches a rule.

In this version, the only possible action is LSDN_VR_DROP.

Error codes and error handling

group errors
Definitions and descriptions of error codes, and error related functions.

Functions that can fail usually return an error code from lsdn_err_t. This is not
very specific, so in addition, some functions allow you to specify a problem callback
function. This is a user-defined function that gets called separately for every error
encountered - such as when validating or committing the model.

66 Chapter 1. User’s Documentation



LSDN Documentation

Convenience functions are provided to dump error strings either to stderr or to a
specified FILE.

Defines

LSDN_MAX_PROBLEM_REFS
Maximum number of problem items described simultaneously.

Configures size of the problem buffer in lsdn_context.

Typedefs

typedef void(*lsdn_problem_cb)(const struct lsdn_problem *diag, void *user)
Problem handler callback.

Parameters

• diag: description of the problem.

• user: user-specified data.

Enums

enum lsdn_err_t
Possible LSDN errors.

Values:

LSDNE_OK = 0
No error.

LSDNE_NOMEM
Out of memory.

LSDNE_PARSE
Parsing from string has failed.

Can occur when parsing IPs, MACs etc.

LSDNE_DUPLICATE
Duplicate name.

Can occur when setting name for a network, virt or phys.

LSDNE_NOIF
Interface does not exist.

LSDNE_NETLINK
Netlink error.

LSDNE_VALIDATE
Network model validation failed, and the old model is in effect.

1.7. C API 67



LSDN Documentation

LSDNE_COMMIT
Network model commit failed and a mix of old, new and dysfunctional
objects are in effect.

You can retry the commit and it will work if the error was temporary.

The error could also be permanent, if, for example, a user have created
a network interface that shares a name with what LSDN was going to
use. In that case, you will be getting the error repeatedly. You can either
ignore it or delete the failing part of the model.

LSDNE_INCONSISTENT
Cleanup operation has failed and this left an object in state inconsistent
with the model.

This failure is more serious than LSDNE_COMMIT failure, since the
commit operation can not be successfully retried. The only operation
possible is to rebuild the whole model again.

enum lsdn_problem_code
Validation and commit errors.

Values:

LSDNP_PHYS_NOATTR
Missing attribute on a phys.

LSDNP_PHYS_DUPATTR
Duplicate attribute on two phys’s in the same network.

LSDNP_PHYS_INCOMPATIBLE_IPV
Incompatible IP versions in the same network.

LSDNP_PHYS_NOT_ATTACHED
Connecting a virt from a phys that is not attached to a network.

LSDNP_VIRT_NOIF
Interface specified for a virt does not exist.

LSDNP_VIRT_NOATTR
Missing attribute on a virt.

LSDNP_VIRT_DUPATTR
Duplicate attribute on two virts in the same network.

LSDNP_NET_BAD_NETTYPE
Incompatible networks on the same machine.

LSDNP_NET_BADID
Bad network ID.

LSDNP_NET_DUPID
Duplicate network ID.

LSDNP_VR_INCOMPATIBLE_MATCH
Two incompatible virt rules with the same priority.

68 Chapter 1. User’s Documentation



LSDN Documentation

LSDNP_VR_DUPLICATE_RULE
Duplicate virt rules.

LSDNP_COMMIT_NETLINK
Committing to netlink failed due to kernel error.

LSDNP_COMMIT_NETLINK_CLEANUP
Decommitting to netlink failed due to kernel error and the state is now
inconsistent.

LSDNP_COMMIT_NOMEM
Committing to netlink failed due to memory error.

LSDNP_NO_NLSOCK
Can not establish netlink communication.

LSDNP_RATES_INVALID
QoS has invalid parameters (both rate and burst must be positive).

See lsdn_qos_rate_t for correct parameters.

LSDNP_COUNT
Guard value.

See LSDN_ENUM for details.

enum lsdn_problem_ref_type
Problem reference type.

Values:

LSDNS_ATTR
Problem with attribute.

LSDNS_PHYS
Problem with lsdn_phys.

LSDNS_PA
Problem with lsdn_net and lsdn_phys combination.

LSDNS_NET
Problem with lsdn_net.

LSDNS_VIRT
Problem with lsdn_virt.

LSDNS_IF
Problem with a network interface.

LSDNS_NETID
Problem with vnet_id.

LSDNS_VR
Problem with lsdn_vr.

LSDNS_END
End of problem list.

1.7. C API 69



LSDN Documentation

Functions

void lsdn_problem_stderr_handler(const struct lsdn_problem * problem, void
* user)

Problem handler that dumps problem descriptions to stderr.

Can be used as a callback in lsdn_commit, lsdn_validate, and any other place
that takes lsdn_problem_cb.

When a problem is encountered, this handler will dump a human-readable
description to stderr.

Parameters

• problem: problem description.

• user: user data for the callback. Unused.

void lsdn_problem_format(FILE * out, const struct lsdn_problem * problem)
Print problem description.

Constructs a string describing the problem and writes it out to out.

Parameters

• out: output stream.

• problem: problem description.

struct lsdn_problem_ref
#include <errors.h> Reference to a problem item.

Consists of a problem type, and a pointer to a struct of the appropriate type.

Public Members

lsdn_problem_ref_type type
Problem type.

void* ptr
Pointer to the appropriate struct.

struct lsdn_problem
#include <errors.h> Description of encountered problem.

Passed to a lsdn_problem_cb callback when an error occurs.

code refers to the type of problem encountered. Depending on the type of the
problem, this might also indicate any number of related problematic items.
Pointers to them are stored in refs.

70 Chapter 1. User’s Documentation



LSDN Documentation

Public Members

lsdn_problem_code code
Problem code.

size_t refs_count
Number of related items.

struct lsdn_problem_ref * refs
Array of references to related items.

Note refs actually point to a buffer in lsdn_context.

Miscellaneous functions

group misc
Miscellaneous functions and definitions.

This section documents the various odds and ends that didn’t fit anywhere else.

• String dump functions for converting the memory model to JSON or TCL
representation

• Network-related definitions, such as frame lengths, header lengths, mini-
mum and maximum IDs

• Network address types and enums

• Address initializer macros

• Address string parsing / dumping functions

• Address comparison functions

• Prefix validation functions

• Constants for broadcast addresses and full masks.

Dump to various formats

char* lsdn_dump_context_json(struct lsdn_context * ctx)
Dump the internal LSDN network model in JSON format.

Return A C string containing the context’s representation in JSON format.
Caller is responsible for deallocating the string using free.

char* lsdn_dump_context_tcl(struct lsdn_context * ctx)
Dump the internal LSDN network model in TCL format.

Return A C string containing the context’s representation in lsctl-
compatible form. Caller is responsible for deallocating the string using
free.

1.7. C API 71



LSDN Documentation

Defines

lsdn_mk_iface_name(ctx)
Generate unique name for an interface.

See lsdn_mk_name

Parameters

• ctx: LSDN context.

ETHERNET_FRAME_LEN
Ethernet frame length in bytes.

IPv4_HEADER_LEN
IPv4 header length in bytes.

IPv6_HEADER_LEN
IPv6 header length in bytes.

UDP_HEADER_LEN
UDP header length in bytes.

VXLAN_HEADER_LEN
VXLAN header length in bytes.

GENEVE_HEADER_LEN
GENEVE header length in bytes.

NET_GENEVE_MIN_VNET_ID
Minimum allowed vnet id for GENEVE networks.

NET_GENEVE_MAX_VNET_ID
Maximum allowed vnet id for GENEVE networks.

NET_VXLAN_MIN_VNET_ID
Minimum allowed vnet id for VXLAN networks.

NET_VXLAN_MAX_VNET_ID
Maximum allowed vnet id for VXLAN networks.

NET_VLAN_MIN_VNET_ID
Minimum allowed vnet id for VLAN networks.

NET_VLAN_MAX_VNET_ID
Maximum allowed vnet id for VLAN networks.

LSDN_MAC_LEN
MAC address size in bytes.

LSDN_IPv4_LEN
IPv4 address size in bytes.

LSDN_IPv6_LEN
IPv6 address size in bytes.

72 Chapter 1. User’s Documentation



LSDN Documentation

LSDN_MK_IPV4(a, b, c, d)
Construct a lsdn_ip IPv4 address from a 4-tuple.

LSDN_INITIALIZER_IPV4(a, b, c, d)
struct literal for a lsdn_ip IPv4 address constructed from a 4-tuple.

LSDN_MK_IPV6(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p)
Construct a lsdn_ip IPv6 address from a 16-tuple.

LSDN_INITIALIZER_IPV6(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p)
struct literal for a lsdn_ip IPv6 address constructed from a 16-tuple.

LSDN_MK_MAC(a, b, c, d, e, f)
Construct a lsdn_mac_t from a 6-tuple.

LSDN_INITIALIZER_MAC(a, b, c, d, e, f)
struct literal for a lsdn_mac_t from a 6-tuple.

LSDN_MAC_STRING_LEN
Maximum length of MAC address string.

Five colons, six hexadecimal octets.

LSDN_IPv4_STRING_LEN
Maximum length of IPv4 address string.

Three dots, four decimal octets.

LSDN_IPv6_STRING_LEN
Maximum length of IPv6 address string.

Seven colons, sixteen hexadecimal octets.

LSDN_IP_STRING_LEN
Maximum length of address string for any IP address.

Typedefs

typedef union lsdn_mac lsdn_mac_t
MAC address.

typedef union lsdn_ipv4 lsdn_ipv4_t
IPv4 address.

typedef union lsdn_ipv6 lsdn_ipv6_t
IPv6 address.

typedef struct lsdn_ip lsdn_ip_t
IP address (any version).

Enums

enum lsdn_ipv
IP protocol version.

1.7. C API 73



LSDN Documentation

Values:

LSDN_IPv4 = 4
IPv4.

LSDN_IPv6 = 6
IPv6.

Functions

lsdn_err_t lsdn_parse_mac(lsdn_mac_t * mac, const char * ascii)
Parse MAC address string into lsdn_mac_t.

Parameters

• ascii: MAC address string.

• mac: parsed MAC address struct.

Return Value

• LSDNE_OK: if parsed successfully.

• LSDNE_PARSE: if ascii could not be parsed into a MAC address.

bool lsdn_mac_eq(lsdn_mac_t a, lsdn_mac_t b)
Compare two lsdn_mac_t for equality.

Return true if a and b are equal, false otherwise.

Parameters

• a: MAC address.

• b: MAC address.

lsdn_err_t lsdn_parse_ip(lsdn_ip_t * ip, const char * ascii)
Parse IP address string into lsdn_ip_t.

Parameters

• ascii: IP address string.

• ip: parsed IP address struct.

Return Value

• LSDNE_OK: if parsed successfully.

• LSDNE_PARSE: if ascii could not be parsed into an IP address.

bool lsdn_ip_eq(lsdn_ip_t a, lsdn_ip_t b)
Compare two lsdn_ip_t for equality.

Return true if a and b are equal, false otherwise.

74 Chapter 1. User’s Documentation



LSDN Documentation

Parameters

• a: IP address.

• b: IP address.

bool lsdn_ipv_eq(lsdn_ip_t a, lsdn_ip_t b)
Compare two lsdn_ip_t for IP version equality.

Return true if both a and b are of the same IP version, false otherwise.

Parameters

• a: IP address.

• b: IP address.

void lsdn_mac_to_string(const lsdn_mac_t * mac, char * buf )
Format lsdn_mac_t as ASCII string.

buf must be able to hold at least LSDN_MAC_STRING_LEN bytes.

Parameters

• mac: MAC address.

• buf: destination buffer for the ASCII string.

void lsdn_ipv4_to_string(const lsdn_ipv4_t * ipv4, char * buf )
Format lsdn_ipv4_t as ASCII string.

buf must be able to hold at least LSDN_IPv4_STRING_LEN bytes.

Parameters

• ipv4: IPv4 address.

• buf: destination buffer for the ASCII string.

void lsdn_ipv6_to_string(const lsdn_ipv6_t * ipv6, char * buf )
Format lsdn_ipv6_t as ASCII string.

buf must be able to hold at least LSDN_IPv6_STRING_LEN bytes.

Parameters

• ipv6: IPv6 address.

• buf: destination buffer for the ASCII string.

void lsdn_ip_to_string(const lsdn_ip_t * ip, char * buf )
Format lsdn_ip_t as ASCII string.

buf must be able to hold at least LSDN_IP_STRING_LEN bytes.

Parameters

• ip: IP address.

• buf: destination buffer for the ASCII string.

1.7. C API 75



LSDN Documentation

lsdn_ip_t lsdn_ip_mask_from_prefix(enum lsdn_ipv v, int prefix)
Return an IPv4/6 address mask for the given network prefix.

Sets prefix leading bits to 1 and leaves the rest at 0. For example,
lsdn_ipv4_prefix_mask(LSDN_IPV4, 24) generates address 255.255.255.0.

Return IP address mask of the appropriate version.

Parameters

• v: IP version.

• prefix: network prefix number of leading bits to set to 1.

bool lsdn_is_prefix_valid(enum lsdn_ipv ipv, int prefix)
Check if the size of network prefix makes sense for given ip version.

Prefix size must not exceed number of bits of the given address.

Return true if prefix makes sense for the IP version, false otherwise.

Parameters

• ipv: IP version.

• prefix: network prefix to check.

int lsdn_ip_prefix_from_mask(const lsdn_ip_t * mask)
Calculate length of prefix from a network mask.

Prefix is a number of leading 1 bits in the mask.

Return number of leading 1 bits.

Parameters

• mask: network mask to check.

bool lsdn_ip_mask_is_prefix(const lsdn_ip_t * mask)
Check if the given IP address is a valid address mask.

A valid network mask is an IP address which, in bits, is a sequence of 1s
followed by a sequence of 0s.

Return true if the IP address is a valid mask, false otherwise.

Parameters

• mask: address to check.

static uint32_t lsdn_ip4_u32(const lsdn_ipv4_t * v4)
Convert lsdn_ipv4_t to uint32_t.

Return IP address represented as a single uint32_t value.

Parameters

• v4: address to convert.

76 Chapter 1. User’s Documentation



LSDN Documentation

const char *lsdn_mk_name(struct lsdn_context *ctx, const char *type)
Generate unique name for an object.

The name is based on the context name, type of the object (net, phys, virt,
etc.) and a unique object counter on the context. It is in the form "ctxname-
type-12".

Results are saved in a reused buffer, so every subsequent call overwrites the
previous results. Users need to make a copy of the returned string.

See lsdn_mk_net_name, lsdn_mk_phys_name, lsdn_mk_virt_name,
lsdn_mk_iface_name, lsdn_mk_settings_name

Return pointer to a buffer with a generated unique name.

Parameters

• ctx: LSDN context

• type: object type (arbitrary string, usually “net”, “phys”, “virt”,
“iface” or “settings”)

Variables

const lsdn_mac_t lsdn_broadcast_mac
Broadcast MAC address.

Its value is FF:FF:FF:FF:FF:FF.

const lsdn_mac_t lsdn_all_zeroes_mac
All zeroes MAC mask.

Matches every MAC address. Its value, obviously, is all zeroes.

const lsdn_mac_t lsdn_multicast_mac_mask
Multicast MAC address.

Its value is 01:00:00:00:00:00.

const lsdn_mac_t lsdn_single_mac_mask
Single MAC mask.

Network mask that matches a single MAC address. Its value is all ones.

const lsdn_ip_t lsdn_single_ipv4_mask
Single IPv4 mask.

Network mask that matches a single IPv4 address. Its value is all ones, or a
prefix 32.

const lsdn_ip_t lsdn_single_ipv6_mask
Single IPv6 mask.

Network mask that matches a single IPv6 address. Its value is all ones, or a
prefix 128.

1.7. C API 77



LSDN Documentation

union lsdn_mac
#include <nettypes.h> MAC address.

Public Members

uint8_t lsdn_mac::bytes[LSDN_MAC_LEN]
address as uint8_t.

char lsdn_mac::chr[LSDN_MAC_LEN]
address as char.

union lsdn_ipv4
#include <nettypes.h> IPv4 address.

Public Members

uint8_t lsdn_ipv4::bytes[LSDN_IPv4_LEN]
address as uint8_t.

char lsdn_ipv4::chr[LSDN_IPv4_LEN]
address as char.

union lsdn_ipv6
#include <nettypes.h> IPv6 address.

Public Members

uint8_t lsdn_ipv6::bytes[LSDN_IPv6_LEN]
address as uint8_t.

char lsdn_ipv6::chr[LSDN_IPv6_LEN]
address as char.

struct lsdn_ip
#include <nettypes.h> IP address (any version).

Public Members

lsdn_ipv v
IP version.

lsdn_ipv4_t v4
IPv4 address.

lsdn_ipv6_t v6
IPv6 address.

78 Chapter 1. User’s Documentation



CHAPTER 2

Programmer’s Documentation (Internals)

If you plan on hacking LSCTL, this chapter is for you. It will describe the available
internal APIs and how they interact.

2.1 Project organization (components)

The core of LSDN is the lsdn library (liblsdn.so), which implements all of the C API
– the netmodel handling and the individual network types. The library itself relies
on libmnl library for netlink communication helpers, libjson for its ability to dump net-
model into JSON and uthash for hash tables.

The command-line tools (lsctl and lsctld) are built upon our lsdn-tclext library, which
provides the lsctl language engine and is layered on the C API. For more info, see
Command-line.

The lsdn library itself is composed of several layers/components (see Fig. 2.1 for illus-
tration). At the bottom layer, we have several mostly independent utility components:

• nettypes.c manipulates, parses and prints IP addresses and MAC addresses

• nl.c provides functions do to more complex netlink tasks than libmnl provides -
create interfaces, manipulate QDiscs, filters etc.

• names.c provides naming tables for netmodel objects, so that we can find physes,
virts etc. by name

• log.c simple logging to stderr governed by the LSDN_DEBUG environment variable

• errors.c contains lsdn_err_t error codes and infrastructure for reporting com-
mit problems (which do not use simple lsdn_err_t errors). The actual problem
reporting relies on the netmodel lsdn_context.

79



LSDN Documentation

• list.h embedded linked-list implementation (every C project needs its own :) )

The netmodel core (in net.c and lsdn.c) is responsible for maintaining the network
model and managing its life-cycle (more info in Netmodel implementation).

For this, it relies on the rules (in rules.c) system, which helps you manage a chain of
TC flower filters and their rules. The system also allows the firewall rules (given by the
user) and the routing rules (defined by the virtual network topology) to share the same
flower table. However, the sharing is currently not done, because we instead opted to
share the routing table among all virts connected through the given phys instead. Since
firewall rules are per-virt, they can not live in the shared table. Another function of this
module is that it helps us overcome the limit of having at most 32 actions in the kernel
for our broadcast rules.

The netmodel core only manages the aspects common to all network types – life cycle,
firewall rules and QoS, but calls back to a concrete network type plugin for constructing
the virtual network. This is done through the lsdn_net_ops structure and is described
more thoroughly in How to support a new network type.

The currently supported network types are in net_direct.c, net_vlan.c, net_vxlan.c
(all types of VXLANs) and net_geneve.c. Depending on the type of the network (learn-
ing vs static), the network implementations rely on either lbridge.c, a Linux learning
bridge, or sbridge.c, a static bridge constructed from TC rules. The Linux bridge is
pretty self-explanatory, but you can read out more about the TC rule madness in Static
bridge.

Finally, liblsdn also has support for dumping the netmodel in LSCTL and JSON formats,
to be either used as configuration files or consumed by other applications (in dump.c).

2.2 Netmodel implementation

The network model (in lsdn.c) provides functions that are not specific to any network
type. This includes QoS, firewall rules and basic validation.

Importantly, it also provides the state management needed for implementing the com-
mit functionality, which is important for the overall ease-of-use of the C API. The net-
work model layer must keep track of both the current state of the network model and
what is committed. Also it tracks which objects have changed attributes and need to
be updated. Finally, it keeps track of objects that were deleted by the user, but are still
commited.

For this, it is important to understand a life-cycle of an object, illustrated in Fig. 2.2.

The objects always start in the NEW state, indicating that they will be actually created
with the nearest commit. If they are freed, the free call is done immediately. Any
update leaves them in the NEW state, since there is nothing to update yet.

Once a NEW object is successfully committed, it moves to the OK state. A commit has
no effect on an OK object, since it is up-to-date.

If a OK object is freed, it is moved to the DELETE state, but its memory is retained until

80 Chapter 2. Programmer’s Documentation (Internals)



LSDN Documentation

lsdn library

utility modules

lsctlc program lsctld program

lsctl-tclext library

lsctl program

lsctl dump

netmodel

JSON dump

vlan static vxlane2e vxlan mcast vxlan geneve direct

rules

lbridge sbridge

listerrorlognamesnlnettypes

Fig. 2.1: Components and dependencies

2.2. Netmodel implementation 81



LSDN Documentation

NEW updatec. error

OK

commit

free

free

FAIL

c. fail

RENEW

c. error

update

DELETE

free

commit

c. fail

commit c. fail c. error

update

free

commit

free

updatec. fail

Fig. 2.2: Object states. Blue lines denote update (attribute change, free), green lines
commit, orange lines errors during commit, red lines errors where recovery has failed.

82 Chapter 2. Programmer’s Documentation (Internals)



LSDN Documentation

commit is called and the object is deleted from kernel. The objects in DELETE state can
not be updated, since they are no longer visible and should not be used by the user of
the API. Also, they can not be found by their name.

If an OK object is updated, it is moved to the RENEW state. This means that on the next
update, it is removed from the kernel, moved to NEW state, and in the same commit
added back to the kernel and moved once again to the OK state. Updating the RENEW
object again does nothing and freeing it moves it to the DELETE state, since that takes
precedence.

If a commit for some reason fails, LSDN tries to unroll all operations for that object
and returns the object to a temporary ERR state. After the commit has ended, it moves
all objects from ERR state to the NEW state. This means that on the next commit, the
operations will be retried again, unless the user decides to delete the object.

If even the unrolling fails, the object is moved to the FAIL state. The only possibility
for the user is to release its memory. If the object was originally already deleted, it
bypasses the FAIL state.

Note: If validation fails, commit is not performed at all and object states do not change
at all.

2.3 How to support a new network type

LSDN does not have an official stable extension API, but the network modules are in-
tended to be mostly separate from the rest of the code. However, there are still a few
places you will need to touch.

To support a new type of network :

• add your network to the lsdn_nettype enum (in private/lsdn.h)

• add the settings for your network to the lsdn_settings struct (in private/lsdn.h).
Place them in the anonymous union, where settings for other types are placed.

• declare a function lsdn_settings_new_xxx (in include/lsdn.h)

• create a new file net_xxx.c for all your code and add it to the CMakeLists.txt file

The settings_new function will inform LSDN how to use your network type. Do not
forget to do the following things in your settings_new function:

• allocate new lsdn_settings structure via malloc

• initialize the settings using lsdn_settings_init_common function

• fill in the:

– nettype (as you have added above)

– switch_type (static, partially static, or learning, purely informational, has no
effect)

2.3. How to support a new network type 83



LSDN Documentation

– ops (lsdn_net_ops will be described shortly)

• return the new settings

Also note that your function will be part of the C API and should use ret_err to return
error codes (instead of plain return), to provide correct error handling (see Error codes
and error handling).

However, the most important part of the settings is the lsdn_net_ops structure – the
callbacks invoked by LSDN to let you construct the network. First let us have a quick
look at the structure definition (full commented definition is in the source code or Gen-
erated Doxygen Documentation):

struct lsdn_net_ops

Public Members

char* type

uint16_t(*get_port)(struct lsdn_settings *s)

lsdn_ip_t(*get_ip)(struct lsdn_settings *s)

lsdn_err_t(*create_pa)(struct lsdn_phys_attachment *pa)

lsdn_err_t(*add_virt)(struct lsdn_virt *virt)

lsdn_err_t(*add_remote_pa)(struct lsdn_remote_pa *pa)

lsdn_err_t(*add_remote_virt)(struct lsdn_remote_virt *virt)

lsdn_err_t(*destroy_pa)(struct lsdn_phys_attachment *pa)

lsdn_err_t(*remove_virt)(struct lsdn_virt *virt)

lsdn_err_t(*remove_remote_pa)(struct lsdn_remote_pa *pa)

lsdn_err_t(*remove_remote_virt)(struct lsdn_remote_virt *virt)

void(*validate_net)(struct lsdn_net *net)

void(*validate_pa)(struct lsdn_phys_attachment *pa)

void(*validate_virt)(struct lsdn_virt *virt)

unsigned int(*compute_tunneling_overhead)(struct
lsdn_phys_attachment *pa)

The first callback that will be called is lsdn_net_ops::create_pa. PA is a shorthand for
phys attachment and the call means that the physical machine this LSDN is manag-
ing has attached to a virtual network. Typically you will need to prepare a tunnel(s)
connecting to the virtual network and a bridge connecting the tunnel(s) to the virtual
machines (they will be connected later).

If your network does all packet routing by itself, use the lbridge.c module. It will
create an ordinary Linux bridge and allow you to connect your tunnel interface via that
bridge. We assume your tunnel has a Linux network interface. If not, you will have to

84 Chapter 2. Programmer’s Documentation (Internals)



LSDN Documentation

come up with some other way of connecting it to the Linux bridge, or use something
else than a Linux bridge. In that case, feel free not to use lbridge.c and do custom
processing in lsdn_net_ops::create_pa.

If the routing in your network is static, use Static bridge. It will allow you to setup a set
of flower rules for routing the packets, ending in custom TC actions. In these actions,
you will typically set-up the required routing metadata for the packet and send it of.

After the PA is created, you will receive other callbacks.

The lsdn_net_ops::add_virt callback is called when a new virtual machine has con-
nected on the phys your are managing. Typically, you will add the virtual machine to
the bridge you have created previously.

If your network is learning, you are almost done. But if it is static, you will want to
handle lsdn_net_ops::add_remote_pa and lsdn_net_ops::add_remote_virt. These call-
backs inform you about the other physical machines and virtual machines that have
joined the virtual network. If the routing is static, you need to be informed about them
to correctly set-up the routing information (see Static bridge). Depending on the imple-
mentation of the tunnels in Linux, you may also need to create tunnels for each other
remote machine. In that case, the lsdn_net_ops::add_remote_pa callback is the right
place.

Finally, you need to fill in the lsdn_net_ops::type with the name of your network type.
This will be used as an identifier in the JSON dumps. At this point you might want
to decide if your network should be supported in Lsctl Configuration Files and modify
lsext.c accordingly. The network type names in LSCTL and JSON should match.

The other callbacks are mandatory. Naturally, you will want to implement the re-
move/destroy callbacks for all your add/create callbacks. There are also validation
callbacks, that allow you to reject invalid network configuration early (see Valida-
tion). Finally, LSDN can check the uniqueness of the listening IP address/port com-
binations your tunnels use, if you provide them using lsdn_net_ops::get_ip and
lsdn_net_ops::get_port.

Since an example is the best explanation, we encourage you to look at some of the
existing plugins – VLAN (net_vlan.c) for learning networks, Geneve (net_geneve.c) for
static networks.

2.4 Static bridge

The static-bridge subsystem provides helper functions to help you manage an L2 router
built on TC flower rules and actions. Because it is based on TC it can be integrated with
the metadata based Linux tunnels.

Metadata-based tunnels (or sometimes called lightweight IP tunnels) are Linux tun-
nels that can choose their tunnel endpoint by looking at a special packet metadata.
This means you do not need to create a new network interface for each endpoint you
want to communicate with, but one shared interface can be used, with only the meta-
data changing. In our case, we use TC actions to set these metadata depending on

2.4. Static bridge 85



LSDN Documentation

the destination MAC address (since we know where a virtual machine with that MAC
lives). The setup is illustrated in Fig. 2.3.

VM1

TC bridge for virtual network 1

VM2

Metadata tunnel

VM3

TC bridge for virtual network 2

VM4

Physical network interface

Fig. 2.3: Two virtual networks using a static routing (using TC) and shared metadata
tunnel. Lines illustrate a connection of each VM.

The static bridge is not a simple implementation of Linux bridge in TC. A bridge is a
virtual interface with multiple enslaved interfaces connected to it. However, the static
bridge needs to deal with the tunnel metadata during its routing. For that, it provides
the following C structures:

Struct lsdn_sbridge represents the bridge as a whole. Internally, it will create a helper
interface to hold the routing rules.

Struct lsdn_sbridge_phys_if represents a Linux network interface connected to the
bridge. This will typically be a virtual machine interface or a tunnel. Unlike with a
classic bridge, a single interface may be connected to multiple bridges.

Struct lsdn_sbridge_if represents the connection of sbridge_phys_if to the bridge. For
virtual machines sbridge_if and sbridge_phys_if will be in a one to one correspondence,
since virtual machine can not be connected to multiple bridges. If a sbridge is shared,
you have to provide a criteria splitting up the traffic, usually by the virtual network
identifier.

Struct lsdn_sbridge_route represents a route through given sbridge_if. For a virtual
machine, there will be just a single route, but metadata tunnel interfaces can provide
multiple routes, each leading to a different physical machine. The users of the static-
bridge module must provide TC actions to set the correct metadata for that route.

Struct lsdn_sbridge_mac tells LSDN to use a given route when sending packets to a
given MAC address. There will be a sbridge_mac for each VM on a physical machine
where the route leads.

86 Chapter 2. Programmer’s Documentation (Internals)



LSDN Documentation

The structures above need to be created from LSDN callbacks. For a network with static
routing, and metadata tunnels, the correspondence will look similar to this:

callback sbridge
create_pa (first call) create phys_if for tunnel
create_pa create sbridge and if for tunnel
add_virt create if, route and mac
add_remote_pa create route for the physical machine
add_remote_virt create mac for the route

2.5 Command-line

The Lsctl Configuration Files are interpreted by the lsdn-tclext library. We have chosen
to use the TCL language as a basis for our configuration language. Although it might
seem as a strange choice, it provides bigger flexibility for creating DSLs than let’s say
JSON or YAML. Basically, TCL enforces just a single syntactic rule:{} and [] parenthe-
ses.

Originally, we had a YAML configuration parser, but the project has changed its head-
ing very significantly and the parser was left behind. TCL bindings were done as a
quick experiment and have aged quite well since then. The YAML parser was later
abandoned altogether.

Naturally, there are advantages to JSON/YAML too. Since our language is Turing com-
plete, it is not as easily analyzed by machines. However, it is always possible to just run
the configuration scripts and then examine the network model afterwards. The TCL
approach also brings a lot of features for free: conditional compilation, variables, loops
etc.

lsdn-tclext library is a collection of TCL commands. One way to use it is in a custom host
program (that is lsctl and lsctld). The program will use libtcl to create a TCL interpreter
and then call lsdn-tclext to register the LSDN specific commands.

lsctld creates the interpreter, registers the LSDN commands, binds to a Unix domain
socket and listens for commands. The commands (received as plain strings) are fed to
the interpreter and stdout and stderr is sent back.

lsctlc does not depend on TCL or lsdn-tclext, since it is a simple netcat-like program
that simply pipes its input to the running lsctld instance and receives script output
back.

lsctl is just a few lines, since it uses the Tcl_Main call. Tcl_Main is provided by TCL for
building a custom TCL interpreter quickly and does argument parsing and interpreter
setup (tclsh is actually just Tcl_Main call).

The other way to use lsdn-tclext is as a regular TCL extension, from tclsh. pkgIndex.tcl
is provided by LSDN and so LSDN can be loaded using the require command.

2.5. Command-line 87



LSDN Documentation

2.6 Test Environment

Our test environment is highly modular, extremely powerful, easy to use and without
any complex dependencies. Thus it is easily extensible even for outsiders and people
beginning with the project.

2.6.1 CTest

The core of the environment is CTest testing tool from CMake. It provides a very nice
way how to define all the tests in a modular way. We create test parts which can be
combined together for one complex test. This means that you can for example say that
you want to use geneve as a backend for the network, you want to test migrate which
means that the migration of virtual machines will be tested and as a verifier use ping.
CTest configuration file is called CMakeLists.txt and tests composed from parts can be
added with test_parts(...) command. Examples follow, starting with the example
described above:

test_parts(geneve migrate ping)

For vlan and dhcp test:

test_parts(vlan dhcp)

For backend without tunnelling, migration with daemon’s help keeping the state in
memory and ping:

test_parts(direct migrate-daemon ping)

For complete list of all tests see CMakeLists.txt in the test directory and all parts usable
to create complex tests are in test/parts. To run all the tests inside the CTest testing
tool just go to test folder and run

ctest

2.6.2 Parts

In the previous section we described the big picture of tests execution. Now we will
describe what part is and how to define it. Part is a simple bash script defining functions
according to prescribed API for our test environment.

Function prepare() is used for establishing the physical network environment unre-
lated to the virtual network we would like to manage. These are “wires” we will use
for our virtual networking.

connect() is the main phase for setting the virtual network environment. LSDN is usu-
ally used in this function for configuring all the virtual interfaces and virtual network
appliances.

88 Chapter 2. Programmer’s Documentation (Internals)



LSDN Documentation

To test if the applied configuration is working, i.e. it has the expected behavior, function
test() is used. Most often ping is used here, but you can use anything for testing the
functionality.

If you want to do some special cleanup you can use cleanup() function.

Back to the part primitive - you can combine various parts together but every rational
test should define all the described functions no matter how many parts are used.

CTest is pretty good at automated execution of complete tests but if you want to debug
the test or execute just part of it there is a run script. This script allows you to execute just
selected stages and combine parts in a comfortable way. It’s usage is self-explanatory:

Usage:
./run -xpctz [parts]

-x trace all commands
-p run the prepare stage
-c run the connect stage
-t run the test stage
-z run the cleanup stage

Thus for running a test for the example from the beginning, but just using the connect
and prepare stages you can call:

./run -pc geneve migrate ping

2.6.3 QEMU

Because we are dependent on fairly new versions of the Linux Kernel we provide scripts
for executing tests in a virtualized environment. This is useful when you use some
traditional Linux distribution like Ubuntu with older kernel and you do not want to
compile or install custom recent kernel.

As a hypervisor we use QEMU with Arch Linux user-space. Here are several steps you
need to follow for the execution in QEMU:

1. Download actual Linux Kernel to $linux-path.

2. Run ./create_kernel.sh $linux-path. This will generate valid kernel with our
custom .config file.

3. Run ./create_rootfs.sh which will create the user-space for virtual machine
with all dependencies. Here you need pacman for downloading all the packages.

4. Run ./run-qemu $kernel-path $userspace-path all which will execute all tests
and shut down.

run-qemu script is much more powerful and you can run all the examples described
above together with debugging in the shell inside that virtual machine. The usage is
following:

2.6. Test Environment 89



LSDN Documentation

usage: run-qemu [--help] [--kvm] [--gdb] kernel rootfs guest-command

Available guest commands: shell, raw-shell, all.

shell will execute just a shell and leave the test execution up to you and raw-shell is
just for debugging the virtual machine user-space because it will not mount needed
directories for tests. all executes all the tests as we have already shown above.

90 Chapter 2. Programmer’s Documentation (Internals)



CHAPTER 3

Developmental Documentation

LSDN project focuses on the problem of easily manageable networking setup in thesch
environment of virtual machines and cloud environment generally. It perfectly fits
to large scale deployment for managing complex virtual networks in data centers as
well as small scale deployment for complete control over containers in the software
developer’s virtual environment. Naturally the network interface providers have to
run Linux Kernel as we use it for the real networking work.

Two core goals which LSDN resolved are:

1. Make Linux Kernel Traffic Control (TC) Subsystem usable:

• LSDN provides library with high-level C API for linking together with re-
cent orchestrators.

• Domain Specific Language (DSL) for standalone configuration is designed
and can be used as is.

2. Audit the TC subsystem and verify that it is viable for management of complex
virtual network scenarios as is.

• Bugs in Linux kernel were found and fixed.

• TC is viable to be used for complex virtual network management.

3.1 Problem Introduction

The biggest challenge in the cloud industry today is how to manage enormous number
of operating system instances together in some feasible and transparent way. No mat-
ter if containers or full computer virtualization is used the virtualization of network-
ing brings several challenges which are not present in the world of classical physical

91



LSDN Documentation

networks, e.g. the isolation customer’s networks inside of datacenter (multi-tenancy),
sharing the bandwidth on top of physical layer etc. All these problems have to be tack-
led in a very thoughtful way. Furthermore it would be nice to build high-level domain
specific language (DSL) for configuring the standalone network as well as C language
API for linking and using with orchestrators.

The networking functionality of such a needed tool is following:

• Support for Virtual Networks, Switches and Ports.

• API for management via library.

• DSL for stand-alone management.

• Network Overlay.

• Multi-tenancy.

• Firewall.

• QoS support.

Most of the requirements above are barely fulfilled with vast majority of recent prod-
ucts which is the main motivation for LSDN project.

3.2 Current Situation

The domination of open-source technologies in the cloud environment is clear. Thus
we do not focus on the cloud based on closed, proprietary technologies such as cloud
services from Microsoft.

In the open-source world the position of Open vSwitch (OVS) is dominant. It is kernel
module providing functionality for managing virtual networks and is used by all big
players in the cloud technology, e.g. RedHat. However Linux Kernel provides almost
identical functionality via it’s traffic control (TC) subsystem. Thus there is code du-
plicity of TC and OVS and furthermore the code base of OVS is not as clear as the code
base of TC. Hence the effort to eliminate OVS in favor of TC and focus to improve just
one place in the Linux networking world.

Although TC is super featureful it has no documentation (literally zero) and the error
handling of it’s calls is most of the time without any additional information. Hence for
correct TC usage one has to read bunch of kernel source codes. Add bugs in a rare used
places and we have very powerful but almost unusable software. Thus some higher
level API is very attractive for everyone who wants to use more advanced networking
features from Linux kernel.

3.3 Similar Projects

There is no direct competition among tools building on top of TC to make it much more
usable (actually to make it just usable). However there are competitors for TC, which

92 Chapter 3. Developmental Documentation



LSDN Documentation

are not that powerful or they are just modules full of hacks and are taken positively in
the Linux mainline.

3.3.1 open vSwitch

• Similar level of functionality to TC.

• Complex, hardly maintainable code and code duplicity with respect to TC.

• External module without any chance to be accepted to kernel mainline.

• Slightly more user convenient configuration than TC.

3.3.2 vSphere Distributed Switch

• Out-of-the game because it is not open-source.

• Not that featureful as TC. E.g. no firewall, geneve etc.

• Closed-source product of VMware.

• Hardly applicable to heterogeneous open-source environment.

3.3.3 Hyper-V Virtual Switch

• Out-of-the game because it is not open-source.

• Not that featureful as TC. E.g. no firewall, geneve etc.

• Closed-source product of Microsoft.

• Hardly applicable to heterogeneous open-source environment.

3.4 Development Environment

In this section we present all the tools used in our project which are worth mentioning.

3.4.1 Development Tools

The platform independent builds with all the dependency and version checks are done
thanks to cmake in cooperation with pkgconfig. This is much nicer and more featureful
alternative to autoconf tools.

Furthermore we kept everything since the beginning in the GIT repository on GitHub.
We used pretty intensely with all it’s features like branches etc. VCS is a must for any
project and GIT is the most common choice.

3.4. Development Environment 93



LSDN Documentation

When we were developing daemon (for migration support) we found library called
libdaemon which helps you to write system daemon in a proper way with all the signal
handling, sockets management and elimination of code full of race conditions.

As a code editor only VIM and ed were allowed.

3.4.2 Testing Environment

Our testing environment is based on the highly modular complex of bash scripts,
where every part which should be tested defines prescribed functions which are fur-
ther executed together with other parts. Like this we can create complex tests just with
combination of several parts.

For automatic test execution and it’s simplification we used ctest tool which is part of
cmake package.

The continuous integration was used through the Travic-CI service which after every
code commit executed all the tests and provides automatic email notification in case of
failure.

We have also extensive support for testing on not supported kernels via QEMU. Auto-
matic scripts are able to create minimalistic and up-to-date Arch Linux root filesystem,
boot up-to-date kernel and ran all tests. This method is also used on Travis-CI, where
only LTS versions of Ubuntu are available.

Of course various networking tools like dhcpd, dhcpcd, dhclient, tcpdump, iproute,
ping etc. were used for diagnostics as well as directly in tests.

Note that during tests we were highly dependent on Linux namespaces, hence we were
able to simulate several virtual machines without any overhead and speed up all the
tests.

3.4.3 Communication Tools

Communication among all team members and leaders was performed via old-school
mailing lists and IRC combo. We used our own self-hosted mailman instance for sev-
eral mailing lists:

• lsdn-general for general talk, organization, communication with leaders and all
important decisions.

• lsdn-travis for automatic reports from Travis-CI notifying us about commits
which break the correct functionality.

• lsdn-commits for summary of every commit we made. This was highly moti-
vation element in our setup, because seeing your colleague committing for the
whole day can make you feel really bad. Furthermore discussion about partic-
ular commit were done in the same thread, which enhances the organization of
decisions we made and why.

94 Chapter 3. Developmental Documentation



LSDN Documentation

For real-time communication we used IRC channel #lsdn on Freenode. This is useful
especially for flame-wars and arguing about future design of the tool.

We have developed a simple bot for our mailing list to remind us of important deadlines
and nag people who have not commited to the repository for a long time. This helped
us “feel” the schedule and keeped us focused on work.

3.4.4 Documentation Tools

The project has fairly nice documentation architecture. C source codes including API
are commented with Doxygen, which is a standard way how to this kind of task. Then
the Doxygen output is used and enhanced with tons of various documentations (user,
developmental. . . ) and processed with Sphinx.

Sphinx is a tool for creating really nice documentations and supports various outputs.
Like this we are able to have HTML and PDF documentation synced and both formats
look fabulous.

Furthermore we use readthedocs.io for automatic generation of documentation after
every documentation commit. This also means that we have always up-to-date docu-
mentation online in browsable HTML version as well as downloadable and printable
PDF version. Note that PDF generation uses LaTeX as a typesetting system, thus the
printed documentation looks great.

The whole documentation source is written in reStructuredText (rst) markup language
which greatly simplified the whole process of creation such a comprehensive documen-
tation.

3.4.5 Open-source contributions

We have identified a few bugs in the Linux kernel during our development. We believe
this is mainly because of the unusual setups we exercise and new kernel features (such
as goto chain, lwtunnels) we use. Following bugs were patched or at least reported and
patched by someone else:

• net: don’t call update_pmtu unconditionally (reported)

• net: sched: crash on blocks with goto chain action

• net: sched: fix crash when deleting secondary chains

• v9fs over btrfs (mailing list dead, not merged)

• net: sched: report if filter is too large to dump

We have also identified a bug in iproute2:

• tc: fix an off-by-one error while printing tc actions

Naturally, our tooling also has problems, so we also fixed a bug in sphinx and breathe.

3.4. Development Environment 95

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=f15ca723c1ebe6c1a06bc95fda6b62cd87b44559
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=a60b3f515d30d0fe8537c64671926879a3548103
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=d7aa04a5e82b4f254d306926c81eae8df69e5200
https://sourceforge.net/p/v9fs/mailman/message/36130692/
https://git.kernel.org/pub/scm/linux/kernel/git/davem/net.git/commit/?id=5ae437ad5a2ed573b1ebb04e0afa70b8869f88dd
https://marc.info/?l=linux-netdev&m=151898324311814
https://github.com/sphinx-doc/sphinx/pull/4627
https://github.com/michaeljones/breathe/pull/365


LSDN Documentation

3.5 Project Timeline

The project came from an idea of Jiri Benc (Linux Kernel Networking Developer) from
Red Hat Czech who wanted to create a proof-of-concept tool which will try to replace
Open vSwitch with purely Linux Kernel functionality and find all the missing function-
ality or bugs in Linux Kernel which would block or slow down the effort to eliminate
Open vSwitch.

These days Vojtech Aschenbrenner was an intern in Jiri’s team and also a student who
was looking for challenging Software Project topic from Systems field, which was a
mandatory part of studies at Charles University. Hence the topic arose.

Formation of the team was not that straightforward. In the beginning the team was
composed from 7 people. They were people with Systems interests and also great
computer scientists. The property of excellency was actually the biggest problem of
the team. In the beginning part of the implementation phase 3 people left the studies
and also team because of much better offer. It was two times because of Google and one
time because of Showmax. Thus 4 people left in the team which was still manageable.

However another personal problems came with studies in the US and jobs of the re-
maining members. Vojtech Aschenbrenner left to the University of Rochester and have
almost no time to work on a project for a lot of weeks. Similar situation came to Adam
Vyškovský who left to Paris because of a dream job in an aviation. Jan Matějek still
had full-time job in SUSE and it looked like the project has a huge problems and will
most probably fail. However Roman Kápl showed his true determination and saved
the project although he has also part-time job in a systems company. It is for sure, that
the project would fail without his knowledge, skills in system programming and dili-
gence. When all the remaining members who were still part of the team saw how he is
continuously working on the project they came back from abroad and decided to finish
the project as well as their master studies instead of continuing they career elsewhere.
All of the team members believe that Roman influenced our future life in a positive
way.

After this we managed to do hackatons quite often and do the majority of the work in
a several months. Because the problematic part of the project where a lot of people left
was before the official start the official timeline of the project was according to the plan
and we were able to fulfill our deadlines which were following:

• Month 1:

– Analysis of the requirements of cloud environments for software defined
networking.

– Analysis and introduction to Linux Kernel networking features, especially
traffic control framework and networking layer of the Linux Kernel.

– Description of detailed use-cases which will be implemented.

• Month 2:

– API design.

• Months 3 - 7:

96 Chapter 3. Developmental Documentation



LSDN Documentation

– Implementation of the complete functionality of the project. This was the
main developing part.

• Months 8 - 9:

– Finalization.

– Debugging.

– Documentation.

– Presentation preparation.

– (The most intense part)

3.6 Team Members

The project was originally started with people who are no longer in the team from var-
ious of reasons. We would like to honorably mention them, because the initial project
topics brainstorming were done with them.

• Martin Pelikán left to Google Sydney few weeks after the project was started. Al-
though he is a non-sleeper which can work on several projects together he was
not able to find a spare time for this one. This was a big loss because his thesis
was about TC.

• David Krška left to Google London few weeks after his bachelor studies gradua-
tion.

• David Čepelík left to Showmax one semester after his bachelor studies graduation.

The rest of the people who started the project were able to stay as a part of the team
and finish it.

• Vojtěch Aschenbrenner established the team and tried to lead the project. He also
created the infrastructure, hosted and managed the communication platform and
officially communicated with authorities from the University as well as mediated
the communication inside the team. He created the LSDN daemon and the way
how it communicates with the client. He also worked on the testing environ-
ment’s scripts, developmental and testing part of documentation and maintains
the Arch Linux package.

• Roman Kápl is the main developer of the project. He participated on all parts of the
project, most notably on internal parts, which are directly communication with
kernel. There is no part of the project, which Roman did not touched. He always
solved the most difficult problems, fixed several bugs in Linux kernel and in tools
used in the project. He maintains package for distributions based on Debian.

• Jan Matějek was mainly involved in writing documentation generated by Doxy-
gen and code reviews. Thanks to it he fixed logical mistakes in the project and
commented the whole source code in a great detail. He was partly involved also
in non-generated documentation. He maintains package for distributions using
RPM. He was the original author of the CMake automated tests.

3.6. Team Members 97



LSDN Documentation

• Adam Vyškovský was together with Roman the main developer of internals and is
the main author of the TCL/JSON exporter, however he also wrote big portion
of non-generated documentation and most notably periodically revised it and
fixed non-trivial amount of mistakes. He spent enormous amount of time during
debugging the netlink communication with Linux kernel, which was absolutely
crucial for the project.

At this place Jiri Benc, the official leader from Red Hat Czech, should be mentioned
because discussion with him was always full of knowledge and his overview of the
Linux Kernel and open-source world is enormous. He always found a spare time to
arrange a meeting with us and was also willing to help us move forward and motivate
us.

3.7 Conclusion, Contribution and Future Work

The project was able to fulfill all the requirements set in the beginning and also follow
the plan created in the beginning. This means that all the requested functionality was
implemented and properly tested. Furthermore it was documented all through from
both programmers view and also from user (API) view. Also detailed use cases with
the quick-start guide were described. Especially the quick-start guide showed how easy
it is to create complex virtual networking scenario in a few steps with very minimal
configuration files.

At the end the whole project was all through tested in both, virtual setups, physical
setups as well as hybrid setups. Finally the demo presentation showing the power of
LSDN was created. This part of work showed how capable LSDN (and TC framework)
is in terms of replacing Open vSwitch – it is capable and the direction of TC framework
development goes in the right way of replacing Open vSwitch in the future.

Another big success of the project was patching the upstream of Linux Kernel as well
as patching the tooling as Sphinx and Breathe. Also several bugs were reported. This
was the secondary and optional target of the project which was also fulfilled.

LSDN has the ambition to become the only tool using the extremely powerful TC frame-
work in Linux Kernel and use it in very user convenient way with very minimal addi-
tional dependencies for creation complex virtual network scenarios. Also the core of
the tool is written efficiently in C, thus there is no performance impact of using LSDN.
Furthermore we were able to push LSDN installation packages to user repositories of
Linux distributions or at least create the packages. This means that the comfort of
installation is maximal which helps to fulfill the main goal of creating easy to use man-
agement tool for complex networks.

Because of the very promising future of the tool, the LSDN team is willing to continue
in supporting the project as well as integrate future enhancements in the TC framework,
fix bugs found in the production as well as customize the project according to the future
needs of virtual networks.

Furthermore there are some features that we consider useful and could be improved
upon straight away. Some of them rely on things that the kernel learned to do in the

98 Chapter 3. Developmental Documentation



LSDN Documentation

last months of the project, or that we have discovered recently - the egress qdisc or
better default disciplines (CoDEL was suggested). We would also like to improve the
firewall (rewrite the rule engine and add support for ACCEPT actions).

The next challenging step is to integrate LSDN into most popular virtualization orches-
trators and eliminate Open vSwitch. This would attract more developers and make the
project part of the state of the art cloud ecosystem - this is the real goal!

3.7. Conclusion, Contribution and Future Work 99



LSDN Documentation

100 Chapter 3. Developmental Documentation



CHAPTER 4

Generated Doxygen Documentation

4.1 Doxygen (Generated documentation)

Generated documentation by Doxygen for LSDN can be found at https://asch.github.
io/lsdn-doxygen . This documentation contains all parts of LSDN (not only the public
API).

101

https://asch.github.io/lsdn-doxygen
https://asch.github.io/lsdn-doxygen


LSDN Documentation

102 Chapter 4. Generated Doxygen Documentation



Index

Symbols
–pidfile, -p

lsctld command line option, 32
–socket, -s

lsctld command line option, 32
-f

lsctld command line option, 32

A
attach (LSCTL directive), 26, 27

C
claimLocal (LSCTL directive), 28
cleanup (LSCTL directive), 31
commit (LSCTL directive), 30

D
detach (LSCTL directive), 27
direction (LSCTL argument type), 24

F
flushVr (LSCTL directive), 28
free (LSCTL directive), 31

G
Geneve, 19

I
int (LSCTL argument type), 23
ip (LSCTL argument type), 24

K
KVM, 5

L
lsctld command line option

–pidfile, -p, 32
–socket, -s, 32
-f, 32

lsdn_commit (C function), 45
lsdn_context_abort_on_nomem (C func-

tion), 43
lsdn_context_cleanup (C function), 44
lsdn_context_free (C function), 43
lsdn_context_get_overwrite (C function),

44
lsdn_context_new (C function), 43
lsdn_context_set_nomem_callback (C

function), 43
lsdn_context_set_overwrite (C function),

44
lsdn_dump_context_json (C function), 71
lsdn_dump_context_tcl (C function), 71
lsdn_ip4_u32 (C function), 76
lsdn_ip_eq (C function), 74
lsdn_ip_mask_from_prefix (C function),

75
lsdn_ip_mask_is_prefix (C function), 76
lsdn_ip_prefix_from_mask (C function),

76
lsdn_ip_to_string (C function), 75
lsdn_ipv4_to_string (C function), 75
lsdn_ipv6_to_string (C function), 75
lsdn_ipv_eq (C function), 75
lsdn_is_prefix_valid (C function), 76
lsdn_mac_eq (C function), 74
lsdn_mac_to_string (C function), 75
lsdn_mk_name (C++ function), 76
lsdn_net_by_name (C function), 51
lsdn_net_free (C function), 51
lsdn_net_get_name (C function), 51
lsdn_net_new (C function), 50

103



LSDN Documentation

lsdn_net_set_name (C function), 50
lsdn_parse_ip (C function), 74
lsdn_parse_mac (C function), 74
lsdn_phys_attach (C function), 48
lsdn_phys_by_name (C function), 47
lsdn_phys_claim_local (C function), 48
lsdn_phys_clear_iface (C function), 49
lsdn_phys_clear_ip (C function), 49
lsdn_phys_detach (C function), 48
lsdn_phys_free (C function), 47
lsdn_phys_get_iface (C function), 49
lsdn_phys_get_ip (C function), 49
lsdn_phys_get_name (C function), 47
lsdn_phys_new (C function), 47
lsdn_phys_set_iface (C function), 49
lsdn_phys_set_ip (C function), 48
lsdn_phys_set_name (C function), 47
lsdn_phys_unclaim_local (C function), 48
lsdn_problem_format (C function), 70
lsdn_problem_stderr_handler (C func-

tion), 70
lsdn_settings_by_name (C function), 53
lsdn_settings_free (C function), 52
lsdn_settings_get_name (C function), 53
lsdn_settings_new_direct (C function), 51
lsdn_settings_new_geneve (C function),

52
lsdn_settings_new_geneve_e2e (C func-

tion), 52
lsdn_settings_new_vlan (C function), 51
lsdn_settings_new_vxlan_e2e (C func-

tion), 52
lsdn_settings_new_vxlan_mcast (C func-

tion), 51
lsdn_settings_new_vxlan_static (C func-

tion), 52
lsdn_settings_register_user_hooks (C

function), 52
lsdn_settings_set_name (C function), 53
lsdn_validate (C function), 44
lsdn_virt_by_name (C function), 56
lsdn_virt_clear_mac (C function), 57
lsdn_virt_clear_rate_in (C function), 57
lsdn_virt_clear_rate_out (C function), 58
lsdn_virt_connect (C function), 56
lsdn_virt_disconnect (C function), 56
lsdn_virt_free (C function), 55
lsdn_virt_get_mac (C function), 57

lsdn_virt_get_name (C function), 55
lsdn_virt_get_net (C function), 55
lsdn_virt_get_rate_in (C function), 57
lsdn_virt_get_rate_out (C function), 58
lsdn_virt_get_recommended_mtu (C

function), 56
lsdn_virt_new (C function), 55
lsdn_virt_set_mac (C function), 56
lsdn_virt_set_name (C function), 55
lsdn_virt_set_rate_in (C function), 57
lsdn_virt_set_rate_out (C function), 57
lsdn_vr_add_dst_ip (C function), 65
lsdn_vr_add_dst_mac (C function), 63
lsdn_vr_add_masked_dst_ip (C function),

65
lsdn_vr_add_masked_dst_mac (C func-

tion), 62
lsdn_vr_add_masked_src_ip (C function),

63
lsdn_vr_add_masked_src_mac (C func-

tion), 61
lsdn_vr_add_src_ip (C function), 64
lsdn_vr_add_src_mac (C function), 61
lsdn_vr_free (C function), 61
lsdn_vr_new (C function), 61
lsdn_vr_new_dst_ip (C function), 65
lsdn_vr_new_dst_mac (C function), 63
lsdn_vr_new_masked_dst_ip (C func-

tion), 65
lsdn_vr_new_masked_dst_mac (C func-

tion), 63
lsdn_vr_new_masked_src_ip (C func-

tion), 64
lsdn_vr_new_masked_src_mac (C func-

tion), 62
lsdn_vr_new_src_ip (C function), 64
lsdn_vr_new_src_mac (C function), 62
lsdn_vrs_free_all (C function), 61

M
mac (LSCTL argument type), 24

N
net (LSCTL directive), 25

P
phys (LSCTL directive), 25

104 Index



LSDN Documentation

Q
Qemu, 5

R
rate (LSCTL directive), 28
rule (LSCTL directive), 27

S
settings (LSCTL directive), 29
settings direct (LSCTL directive), 29
settings geneve (LSCTL directive), 30
settings vlan (LSCTL directive), 29
settings vxlan/e2e (LSCTL directive), 29
settings vxlan/mcast (LSCTL directive),

29
settings vxlan/static (LSCTL directive), 30
show (LSCTL directive), 31
size (LSCTL argument type), 24
speed (LSCTL argument type), 24
string (LSCTL argument type), 23
subNet (LSCTL argument type), 24

V
validate (LSCTL directive), 31
virt (LSCTL directive), 26
VLAN, 17
VXLAN, 18

Index 105


	User’s Documentation
	Introduction
	Intended usage

	Installation
	System requirements
	Building from source
	Building packages
	Running tests

	Quick-Start
	Setting up virtual machines
	Using configuration files
	Using the C API

	Network representation
	Networks and their settings
	Virts
	Physes
	Validation
	Commit
	Error Handling
	Debugging
	Supported tunneling technologies

	Lsctl Configuration Files
	Syntax
	Names
	Nesting
	Argument types
	Directive reference
	Command-line tools

	Examples
	Example 1 - Basic Principles
	Example 2 - VM Migration
	Example 3 - Traffic Shaping

	C API
	Overview
	Object life-cycle
	Attributes
	Network model life-cycle
	Reference


	Programmer’s Documentation (Internals)
	Project organization (components)
	Netmodel implementation
	How to support a new network type
	Static bridge
	Command-line
	Test Environment
	CTest
	Parts
	QEMU


	Developmental Documentation
	Problem Introduction
	Current Situation
	Similar Projects
	open vSwitch
	vSphere Distributed Switch
	Hyper-V Virtual Switch

	Development Environment
	Development Tools
	Testing Environment
	Communication Tools
	Documentation Tools
	Open-source contributions

	Project Timeline
	Team Members
	Conclusion, Contribution and Future Work

	Generated Doxygen Documentation
	Doxygen (Generated documentation)


